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This thesis describes a proposal for the structure of space-time at the smallest
scales. The underlying new “substance” is what we call a causal set, a locally
finite set of elements endowed with a partial order relation. It is conjectured that,
when suitable causal sets on a large number of elements are considered, there
exist unique lorentzian manifolds (up to small changes in the metric), in which
the causal sets appear as uniformly distributed points, with metric-induced causal
relations which agree with the partial order relation, and which are approximately
flat on the length scales determined by the density of embedded points. These
manifolds are free of causality violations and time-orientable, and provide a causal
macroscopic interpretation of the partial order relation.

In an outline of the procedure for constructing the manifold associated with
a causal set, we start by looking at small causal sets, thought of as embedded in
the larger ones as subsets, which already contain the dimensionality information. -
We then propose ways of calculating effective dimensionalities for large causal
sets, and of using the global structure of the causal set to determine the topology
and other properties of the manifold, if it exists. For most causal sets, we expect
this procedure not to yield any manifold, because no good embedding, in the
sense described above, can be produced. In some cases, however, a suitable
coarse-graining of the causal set can give a new causal set which does admit a
good embedding, together with a set of “fields” on this causal set. The continuum
approximation to the coarse-grained causal set will then consist of a manifold with
metric and additional fields, and properties of the geometry and fields will depend
on the degree of coarse-graining. In particular, the effective dimensionality can
vary with length scale.

Dynamics is formulated in the sum over histories approach; which causal sets
actually contribute most to the total amplitude, and whether these do have a
well-defined continuum approximation, will then depend on the choice of basic
amplitude for each history, and on how we define the class of histories we sum
over. Provided such an approximation exists, a general argument is given, inde-
pendently of the details of the dynamics, indicating that we can expect general
relativity to be reproduced in the classical limit. A few possible choices for the

quantities defining the dynamics are proposed.
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1. INTRODUCTION

1.1 Why look for a new fundamental structure of space-time

The idea that the basic structure underlying all of physics is that of a smooth
4-dimensional space-time manifold of simple topology has dominated the devel-
opment of classical physics, quantum mechanics and classical general relativity,
although there are big differences in the structures different theories have at-
tributed to space-time in addition to that of smooth manifold (see, e.g., Penrose

[15}). In fact, this development is largely due precisely to the mathematical tools

of calculus offered by the continuum picture, and in turn it has strengthened our

belief in the correctness of this picture. Certainly, our everyday life experience
suggests a topological structure, and 4-dimensionality and trivial topology are
the only possibilities for it, compatible with what we see at all scales in the range
of our observations and experiments. The same cannot be said, however, about
the manifold nature of space-time. The definition of a manifold is based on that
of the real number continum, and it has been remarked (see, e.g., Schrodinger
[19], Penrose [16¢]) that it is not only our everyday experience which has shaped
the present concept of continuum, but also the particular form of calculus which
was developed starting with Newton and Leibniz. Thus, we could consider as a
cultural prejudice or “historical accident” the fact that we are using this notion
of continuum and of manifold, based on a nonconstructive and nonintuitive def-
inition of real numbers, as opposed to, e.g., using the so-called “non-standard

analysis® as a basis for our theories; we accept the usual notions just because of
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the familiarity we have with them.

How can our view of space-time structure be affected by an increased under-
standing of large- and small-scale physics? A better knowledge of the large-scale
structure of space-time can only lead us to revise its topology. In fact, it is widely
accepted that, on cosmological scales, the universe as a whole may very well be
topolog.ica.lly nontrivial (in particular, it may be spatially closed). But this pos-
sibility can be, and has been, easily accomodated into our theories. What I wish
to discuss here is the small-scale structure.

On experimental grounds, the conventional space-time picture holds well
down to scales of the order of the smallest distances probed in high energy inter-
actionsr, about 10~ 1¢m, and it is believed that it will continue to hold for many
more or;iers of iﬁa.gnitude.T This picture, however, has been more and more
often criticized on theoretical grounds in recent years, and many physicists now
believe that it is only an approximation to a more fundamental structure. This
new structure is expected to reveal itself in regimes where quantum gravitational
effects become important, i.e., at length scales of the order of the Planck length,
Lp = (Gh/c3)1/2 ~ 1.6 - 103 ¢m, the only constant with dimensions of length

one can construct using the fundamental physical constants A, ¢ and G.

Conceptual reasons
Conceptually, there are several reasons for believing in the existence of a more
fundamental structure, although not all of them point along the same direction.

First of all, in any attempt to unify the principles of quantum mechanics with

+ We might notice, furthermore, that any possible observational indication that the smooth

" manifold picture is not adequate would be very indirect, and dependent on specific models
for the interactions through which the effect was observed, since all the relevant observations
themselves are made through a series of processes, all of which have length scales much
greater than the possible manifold-breaking length, and would thus have 2 smoothing effect
on the results.
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general relativity, one is immediately led to the conclusion that, if space-time is
indeed a lorentzian manifold, then the metric tensor must be subject to quantum
fluctuations which become comparable to its expectation value at scales of the
order of £p (for a brief discussion, see, e.g., Misner, Thorne and Wheeler [50],
§43.4). One qualitative way to see this, is the following well-known “uncertainty
principle” argument. Suppose we wanted to make some measurement in a very
small region of space-time. Then we would have to use probes with very small
characteristic length and/or time scale, i.e., with very high momentum and/or
energy. But this means having a large stress-energy tensor, which, in general
relativity, produces a strong curvature, and thus a big distortion of space-time in
the region of interest. We conclude that in a theory which includes both quantum
mechanics and general relativity, the notion of a space-time point or of space-time
metric will become fuzzy, signaling the breakdoﬁn of the conventional notion of
space-time.

Second, we have Kaluza-Klein theories, motivated by the desire to find a
unified theory of gravity and other interactions (originaily, in the 20’s, electro-
magnetism, now all gauge theories). In these theories, space-time is a manifold
K of dimensionality greater than 4, which has (approximately) the structure of
a fiber bundle over a 4-dimensional manifold M. The size of the fiber (the “in-
ternal manifold”) is assumed to be of the order of £p, thus, at large scales, the
only structure we see is thﬁt of the 4-dimensional base space M. If one starts
with a2 dynamical theory of the metric alone in the full Kaluza-Klein space-time
K, described by an action of the same form as the Einstein-Hilbert action in
general relativity, then in the low energy {imit this induces on M, a metric, and
a set of scalar and gauge fields, the latter coupled to the metric in a similar

way to the Yang-Mills couplings. Despite some phenomenological difficulties, it
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is believed that these theories, or some of their modified versions, contain good
indications of a geometrical origin of gauge interactions, and that, therefore, the
4-dimensionality and trivial topology of space-time is probably not correct at
small scales.

Third, one could argue that, if we hope to eventually reduce physics to geom-
etry (although, somehow, not everybody does), in order to reproduce the known
phyéics, which is not scale invariant, the geometry has to include a fundamental
length scale, and such a scale cannot arise from a smooth manifold (at least of
relatively simple topology), with a dynamical metric, without any further struc-
ture.

Finally, the belief in the ultimate simplicity of nature makes a picture based
on the comtinuum of real numbers, with lots of other structure added on, very
suspicious: as Finkelstein [6] asks, why is space-time so complicated? We will
see another class of conceptual reasons at the end of this section. The main
practical reasons, however, that initially got physicists to start worrying about
the correctness of the comventional description of space-time, have to do with

difficulties in quantum field theory and general relativity.

Technical reasons

In quantum field theory, calculations of amplitudes for physical processes
yield infinities, which in some cases can be removed, by a combination of more or
less ad hoc techniques, regularization of divergent integrals and renormalization
of various quantities defined in the theory. The source of the problem in most
cases lies in integrals in momentum space which extend to arbitarily large values
of the momenta, Le., to arbitrarily small length scales. The simplest way to
make the integrals converge is to introduce a momentum cutoff: a fundamental

length scale. This scale could, but does not have to, be identified with “the
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smallest possible length”: it just indicates that something in the structure of the
theory changes at small scales. For some theories, results of calculations may
not depend crucially on how the change occurs, as long as we introduce in the
parameters of the theory a suitable dependance on the above length scale (we
call these renormalizable theories), whereas for some other theories this effective
approach does not work: there is no fundamental reason for preferring one kind of
theory over the other, and in both cases there is something about their small-scale
behavior to be understood.

In general relativity, starting with the Schwarzschild solution for a black
hole, an isolated object, and the Friedmann solutions in the cosmological context,
singularities in the metric have been often appearing in the solutions of the field
equations. While initially it was thought that these were a spurious consequence
of the high degree of symmetry of the exactly known solutions, the singularity
theorems of Hawking and Penrose proved that singularities will generically arise
in many physically reasonable contexts. But a singularity signals the end of the
region of applicability of Einstein’s equation: the evolution of the gravitational
feld in its future light cone is completely undetermined. Thus, because of our
reluctance to accept that points of infinite curvature can actually arise, and
given that we would like to have, as an wltimate theory of gravity, a theory with
2 wider range of applicability, it has become important to look for ways to avoid
singularities. From previous experience, we can expect a quantum theory fo
smooth out the singularities of its classical counterpart, just like it avoided the
classical problem of an electron falling on the atomic nucleus by “spreading out”
the electron to a wave function with support on an extended region around the
nucleus. In our case, it seems natural to expect it to spread out the curvature

that classically leads to a singularity over an extended region, and we are led to
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look for a quantum theory of space-time geometry.

First proposals

These difficulties were realized a long time ago. In particular, while a suf-
ficient understanding of singularities in general relativity to appreciate the gen-
erality of this phenomenon in the theory was developed only in the late 60’s,
quantum field theory evolved rapidly enough that in the 30’s physicists were al-
ready looking for fundamentally discrete structures for spac;e—l:i]:ne,T which would
help to solve the divergence problems (see, e.g., Ambarzumian and Iwanenko [2];
Silberstein [20]; Snyder [21}; Hellund and Tanaka [9]). These very first theories
were not Lorentz invariant, since, e.g., in some cases space was made discrete,
bui_; time remained continuous, and soon new ideas came out which attempted
to avoid this shortcoming. Schild (18] proposed a model in which space-time
is a discrete set, obtained as a regular lattice in Minkowski space, which is left
invariant by a discrete subgroup of the Lorentz group. The problemn with this
proposal is that one did not recover in some large scale view the invariance under
(a good approximation to) the full Lorentz group. For example, in the simple
case of a cubical lattice in 3+1 dimensions, the allowed discrete boost parame-
ters are 8 = (n*—1)}/?/n, where n is a non-negative integer, so, in particular,
Bynin = V3 /2. One does not see therefore how the Lorentz symmetry group can
be recovered in a continuum approximation, although it is still possible to acco-
modate slowly moving particles in any spatial direction in the theory, since the
spatial projections of the integer (null or) timelike vectors are dense in R3, and
one can imagine a slow motion arising in a similar way to the Zitterbewegung of

a Dirac particle.

%+ It is amusing to notice that it was thought that this discrete structure would show up at
scales of the order of the nuclear dimensions.
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Coish [4] proposed a more elaborate structure in which space-time points are
specified by giving their cartesian coordinates, which however are not real-valued,
but take their values in a very large but finite commutative field, i.e., the Galois
field of prime order GF (p). This proposal is not equivalent to an infinite cubic
lattice in Minkowski space because of the periodic boundary conditions, but,
for an adequately huge p, a sufficiently large number of points will approximate
well some portion of Minkowski space: for p ~ 101081, we can get a reasonable
approximation to the usual geometry from 10~ 13¢m to 2-10° light years. All this
is again rather artificial, but the interesting part about it is that, if we consider the
«ILorentz” group of symmetries of the “metric form” —z2+ 23+ z3+123 (remember,
everything.is GF (p)-valued), its representations include 2 X 2 complex matrices,
which have an action of a (p-+1)-fold “covering” of this group, in a similar
manner to SL(2,C) as a double covering of the ordinary Lorentz group. The
generator of the extra transformations, which induce the identity of space-time,
and can thus be considered as gauge, is identified by Coish with the electric
charge. Although one should justify such an idéntiﬁcation by looking at the
couplings of the flelds involved, the essential idea is that one can look for the
origin of the internal symmetries observed in nature, in an alternative way to
ﬁle Kaluza-Klein program: from a discrete fundamental structure, which gives
these symmetries together with general space-time covariance in the continuum
approximation. |

Several other similar ideas at the same “pre-quantum gravity” level have been
proposed. Some of them (e.g., Coxeter and Whitrow {5], Hill [10}, Ahmavaara
[1]) are roughly along the same lines as the ones described above, others (e.g.,
Takeno [25]) are more quantum mechanical. However, I will not go into their

details here.
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Comments

The above proposals might rid us of the ultraviolet divergences of quantum
field theory, although, from the point of view of gaining a deeper understand-
ing of the physics involved, they do so in a rather trivial way. But, besides the
question of whether they reproduce the correct “continuum limit”, the major
conceptual criticism they are subject to is that they do not incorporate the spirit
of general relativity. Taken in a restrictive sense, this means first of all that
one should have tried to incorporate not just Lorentz invariance, but full dif-
feomorphism invariance in the discrete theory.? To implement this invariance,
one could propose a theory of space-time as a lattice with a “random” structure,
in which the distances between sites are not fixed, but dynamically determined,
and which is not embeddable in a manifold with a metric fixed a priori. Theories
of this kind, based on Regge calculus, a tool invented for doing calculations in
a discretized version of general relativity, have been proposed, e.g., by Lee [74]
(who introduced the concept of random lattice), Itzykson [72], and Lehto, Nielsen
and Ninomiyva [13]. One first chooses a “link structure” for the discrete set of
points, which gives it enough rigidity that it already determines the topology
of any continuum space-time manifold which will ultimately approximate it—in
practice one usually makes it into 2 simplicial complex—, and then prescribes a
dynamical theory which assigns lengths to all the links between points. Going

over to the continuum, these lengths give the metric on the manifold.

4+ To put it another way, one can hardly expect to find the correct fundamental description
of “pregeometry” by starting from symmetry considerations, just like one would not have
found the description of physical geometry given by general relativity if one had followed,
instead of the Riemannian approach to geometry, that of Klein’s Erlangen Programme,
even though the latter had been fruitful in other areas, and it later proved itself useful
again in the study of symmetries arising in the theory, and in particular in the use of fiber
bundles. {One might say that general relativity really is 2 theory with the diffeomorphism
group as symmetry group. But the concept of symmetry involved is not derived from known
symmetries of euclidean geornetry; rather, it is a generalization of the enclidean concept to
a new structure.)
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.But there is a deeper sense in which one can try to follow the spirit of general
relativity. General relativity taught us that the metric of space-time is not to
be thought of as a fixed backgroupd on which physics takes place, but it partici-
pates in the dynamics. However, the space-time metric is just one mathematical
structure sitting on top of a tower of constructions, and it becomes legitimate
to ask why these other constructions should be taken as part of the background,
fixed once ang for all. One can thus ask a similar “tower” of questions: “Why is
the space-time metric of lorentzian signature?”, “Why does there exist a metric
at all?”, “Why can’t the differentiable structure and topology of space-time be
dynamical entities?”, “Why is space-time four-dimensional?”, “Why does it have
a differentiable and topological structure in the first place?”

Once we start asking those questions, almost in the same spirit we might ask:
“Why are the internal symmetries we observe in nature present?”. Although this
question might seem less geometrical than the previous ones, we have already
had hints that the distinction may not be all that clear-cut. We might then
continue with more “phenomenological” ones, like: “Why is the cosmological
constant so small?”, “Why is our universe so large?”, “Why aren’t there holes in
space-time?”, “Why are there (nearly massless) fermions?”.

In the context of these questions, our search for a more fundamental structure
for space-time takes on a whole new meaning, and we see why trying to base a
theory on continuum language, on concepts like lattice embedded in Minkowski
space or discrete subgroups of the Lorentz group, and in general keeping ideas
borrowed from manifolds or 4-dimensionality in our models, won’t do. What
is needed instead is a “new substance”, with which to build a theory of space-
time. We use the term “substance”™ to stress the fact that this theory should

make no reference, in its formulation, to facts that the questions above seek to
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explain (except for motivational purposes), and should be logically independent
of the concepts used in them. It can be thus compared to the introduction of
new particles, with dynamics of their own, in a new fundamental description of
matter.

The search for such a substance implicitly assumes that there is a real phys-
:cal basis for the geometric structure we assign to space-time. This is contrary
to the conventionalist view of geometry (see, e.g., Reichenbach [65], Grinbaum
[64]), according to which we can assign any geometry to space-time (e.g., the
..metric does not need to have a lorentzian signature, or be related to the matter
content by Einstein’s equations, and some authors—e.g., Sexl [66]—make sim-
ilar considerations even rega;din‘g the topology and dimension of space-time),
as long as we choose appropriately our physical laws and prescriptions for as-
sociating geometrical quantities with measuring rods and clocks. In this view,
choosing a geometric structure is something like choosing coordinates or a unit
system, and the choice is just a matter of convention, although the one made in
general relativity is the most convenient. If we can derive a geometric structure
of the continuum in a natural way from a new substance, we will have a stronger

argument than the continuum theory can give (see, e.g., Barman [63]) for the

more empiricist view of physical geometry.
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1.2 Quantum gravity and radical approaches to gpace-time structure

Questions along the lines of those posed at the end of the previous section had
been asked long before the appearance of the physical motivation for them. Par-
ticularly suggestive for us is Riemann’s query: “Why is there a spaﬂal metric?”.
Riemann [19] attempted to start answering the question by remarking that if
space were not a “continuous manifold” but a “discrete manifold”, then there
would be a natural notion of volume, or more precisely of ratio of volumes. Al-
though one cannot construct a metric without additional structure just on a
discrete set of points, the mere fact that space was discrete would explain the
existence of a notion of volume: the number of points contained in a given region
of space. Riemann’s idea went unnoticed to physicists, still busy as they were
in discussing whether even matter is discrete and made of atoms or not, and at
the same time it preceded the development of the notion of space-time metric,
without which, as we can see a posteriori, it could not develop into a prescription

for deriving even just the spatial metric from a “discrete manifold”.

Nowadays, a promising theory one can turn to, in the attempt to answer
those questions, is quantum gravity, as we can see from the general remarks on
quantum gravity and on singularities in general relativity I made in the previous
section. In practically all the work on classical general relativity, and most of that
in quantum gravity, however, there are still background elements which have not
“joined the actors” in the play of dynamical ex"c;lution: the differentiable struc-
ture of the manifold, its topology, its dimensionality, its very manifold nature.
This is largely due, in addition to the technical difficulties, to the rather differ-
ent situation in which quantum gravity has found itself, as compared to most

other developing physical theories. According to Taketani [70], the evolution of
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a physical theory can be schematically divided into three stages: an initial stage
in which the phenomenal effects of a particular “substance”, or type of matter,
are observed; a second stage in which the new substance in question is clearly
recognized; and a final stage in which the comprehensive dynamics characterizing
this substance is understood.T Quantum gravity, however, is forced to skip vir-
tually all of the first stage and tackle the second and third stages simultaneously,
hoping that the resulting theory will enable us to recognize with hindsight what
features of already-known physics can serve as its “phenomenology™.

In a sense the situation in which quantum. gravity finds itself is a conse-
quence of its lack of phenomenological basis, but the latter may not be merely
a coincidence due to inadequate experimental techniques. Whereas some gquan-
tum gravitational effects (related, e.g., t0 black hole evaporation or properties of
gravitational radiation) might in principle lead to observations, they are rather
indirect and cannot point in a clear way to the “new substance” involved. Possi-
bly, all characteristic effects of the latter will, even in principle, be observable only
in terms of the “higher-level structures” used to describe macroscopic physics,
and we might not be able to separate the identification of the new substance
from the understanding of the mechanism by which it effectively gives rise to
such structures, i.e., the understanding of its fundamental quantum dynamics
and its “semiclassical approximation”.

To some extent, the distinction between the second and third stages of Take-
tani's scheme corresponds to that between kinematics and dynamics of a the-
ory, and the remark in the previous paragraph reminds of the suggéstion that
the latter distinction may also no jonger be that sharp for quantum gravity,

i.e., that the dynamics of quantum gravity may be built in, intimately woven

t A good recent example is the theory of hadrons, with the three stages being respectively,
the observation of resonances, the discovery of quarks, and the formulation of QCD.
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into its kinematical structure. A theory which realizes this—not very precisely
formulated—possibility has been looked for by physicists for some time already,
attracted by the idea of bringing about such a conceptual unification in the prin-
ciples of physics, but we are still far from a satisfactory proposal. As we will see
shortly, even some of the most radical proposals for the fundamental space-time
structure, including our own, have not been sufficiently developed yet, or have
been constructed with an essential distinction between a kinematical part and a
dynamical, quantum mechanical one.

The considerations above are not meant to detract from the value of those
proposals, since, to & great extent, the possibility of making small modifications
to one aspect of general reiativity, while retaining enough of its usual structure to
allow us to use many known results and techniques, is what has allowed us to get
some clues about features that a full theory of quantum gravity should possess.
Among the many illustrations of this fact, let us see a few which are directly
relevant for us. The dynamics of Kaluza-Klein theories, including their super-
gravity variants, takes place in fixed background manifolds, but of very different
topology from the usual one: although these theories are relatively “harmless”
from the point of view analyzed here, as 1 remarked earlier they have introduced
and “popularized” the idea +hat four may just be an effective dimensionality of
space-time. Many studies have been done by now on topology change in general
relativity (see, e.g., Geroch {33], Tipler [39], Yodzis {41], Sorkin [36], Borde [31]
and other references therein). Most of the results in the subject are of a kine-
matical kind, i.e., they are topological conditions under which a space-time will
exist which interpolates between two spacelike hvpersurfaces of different topoi-
ogy, or they give restrictions on the curvature of the manifold, which, if we

require the metric to satisfy in addition Einstein’s equation, become restrictions
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on the matter stress-energy tensor. We have however obtained many indications
about how topology changing processes—-essentially quantum phenomena—will
appear in the cemiclassical limit, their connection to causality violations, and
the possibility of using them to create particles out of space-time geometry, in
the form of geons, “kinks” or “knots” in space (see, e.g., Sorkin [37]).Jr Several
ideas about quantum geometry gimilar to those about geons were formulated
by Wheeler [40], who gave fancy names to various effects expected to arise in
his gebmetrodynamic vision. One of these is that of space-time foam, in which