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This thesis describes a proposal for the structure of space-time at the smallest
scales. The underlying new “substance” is what we call a causal set, a locally
finite set of elements endowed with a partial order relation. It is conjectured that,
when suitable causal sets on a large number of elements are considered, there
exist unique lorentzian manifolds (up to small changes in the metric), in which
the causal sets appear as uniformly distributed points, with metric-induced causal
relations which agree with the partial order relation, and which are approximately
flat on the length scales determined by the density of embedded points. These
manifolds are free of causality violations and time-orientable, and provide a causal
macroscopic interpretation of the partial order relation.

In an outline of the procedure for constructing the manifold associated with
a causal set, we start by looking at small causal sets, thought of as embedded in
the larger ones as subsets, which already contain the dimensionality information. -
We then propose ways of calculating effective dimensionalities for large causal
sets, and of using the global structure of the causal set to determine the topology
and other properties of the manifold, if it exists. For most causal sets, we expect
this procedure not to yield any manifold, because no good embedding, in the
sense described above, can be produced. In some cases, however, a suitable
coarse-graining of the causal set can give a new causal set which does admit a
good embedding, together with a set of “fields” on this causal set. The continuum
approximation to the coarse-grained causal set will then consist of a manifold with
metric and additional fields, and properties of the geometry and fields will depend
on the degree of coarse-graining. In particular, the effective dimensionality can
vary with length scale.

Dynamics is formulated in the sum over histories approach; which causal sets
actually contribute most to the total amplitude, and whether these do have a
well-defined continuum approximation, will then depend on the choice of basic
amplitude for each history, and on how we define the class of histories we sum
over. Provided such an approximation exists, a general argument is given, inde-
pendently of the details of the dynamics, indicating that we can expect general
relativity to be reproduced in the classical limit. A few possible choices for the

quantities defining the dynamics are proposed.
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1. INTRODUCTION

1.1 Why look for a new fundamental structure of space-time

The idea that the basic structure underlying all of physics is that of a smooth
4-dimensional space-time manifold of simple topology has dominated the devel-
opment of classical physics, quantum mechanics and classical general relativity,
although there are big differences in the structures different theories have at-
tributed to space-time in addition to that of smooth manifold (see, e.g., Penrose

[15}). In fact, this development is largely due precisely to the mathematical tools

of calculus offered by the continuum picture, and in turn it has strengthened our

belief in the correctness of this picture. Certainly, our everyday life experience
suggests a topological structure, and 4-dimensionality and trivial topology are
the only possibilities for it, compatible with what we see at all scales in the range
of our observations and experiments. The same cannot be said, however, about
the manifold nature of space-time. The definition of a manifold is based on that
of the real number continum, and it has been remarked (see, e.g., Schrodinger
[19], Penrose [16¢]) that it is not only our everyday experience which has shaped
the present concept of continuum, but also the particular form of calculus which
was developed starting with Newton and Leibniz. Thus, we could consider as a
cultural prejudice or “historical accident” the fact that we are using this notion
of continuum and of manifold, based on a nonconstructive and nonintuitive def-
inition of real numbers, as opposed to, e.g., using the so-called “non-standard

analysis® as a basis for our theories; we accept the usual notions just because of
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the familiarity we have with them.

How can our view of space-time structure be affected by an increased under-
standing of large- and small-scale physics? A better knowledge of the large-scale
structure of space-time can only lead us to revise its topology. In fact, it is widely
accepted that, on cosmological scales, the universe as a whole may very well be
topolog.ica.lly nontrivial (in particular, it may be spatially closed). But this pos-
sibility can be, and has been, easily accomodated into our theories. What I wish
to discuss here is the small-scale structure.

On experimental grounds, the conventional space-time picture holds well
down to scales of the order of the smallest distances probed in high energy inter-
actionsr, about 10~ 1¢m, and it is believed that it will continue to hold for many
more or;iers of iﬁa.gnitude.T This picture, however, has been more and more
often criticized on theoretical grounds in recent years, and many physicists now
believe that it is only an approximation to a more fundamental structure. This
new structure is expected to reveal itself in regimes where quantum gravitational
effects become important, i.e., at length scales of the order of the Planck length,
Lp = (Gh/c3)1/2 ~ 1.6 - 103 ¢m, the only constant with dimensions of length

one can construct using the fundamental physical constants A, ¢ and G.

Conceptual reasons
Conceptually, there are several reasons for believing in the existence of a more
fundamental structure, although not all of them point along the same direction.

First of all, in any attempt to unify the principles of quantum mechanics with

+ We might notice, furthermore, that any possible observational indication that the smooth

" manifold picture is not adequate would be very indirect, and dependent on specific models
for the interactions through which the effect was observed, since all the relevant observations
themselves are made through a series of processes, all of which have length scales much
greater than the possible manifold-breaking length, and would thus have 2 smoothing effect
on the results.
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general relativity, one is immediately led to the conclusion that, if space-time is
indeed a lorentzian manifold, then the metric tensor must be subject to quantum
fluctuations which become comparable to its expectation value at scales of the
order of £p (for a brief discussion, see, e.g., Misner, Thorne and Wheeler [50],
§43.4). One qualitative way to see this, is the following well-known “uncertainty
principle” argument. Suppose we wanted to make some measurement in a very
small region of space-time. Then we would have to use probes with very small
characteristic length and/or time scale, i.e., with very high momentum and/or
energy. But this means having a large stress-energy tensor, which, in general
relativity, produces a strong curvature, and thus a big distortion of space-time in
the region of interest. We conclude that in a theory which includes both quantum
mechanics and general relativity, the notion of a space-time point or of space-time
metric will become fuzzy, signaling the breakdoﬁn of the conventional notion of
space-time.

Second, we have Kaluza-Klein theories, motivated by the desire to find a
unified theory of gravity and other interactions (originaily, in the 20’s, electro-
magnetism, now all gauge theories). In these theories, space-time is a manifold
K of dimensionality greater than 4, which has (approximately) the structure of
a fiber bundle over a 4-dimensional manifold M. The size of the fiber (the “in-
ternal manifold”) is assumed to be of the order of £p, thus, at large scales, the
only structure we see is thﬁt of the 4-dimensional base space M. If one starts
with a2 dynamical theory of the metric alone in the full Kaluza-Klein space-time
K, described by an action of the same form as the Einstein-Hilbert action in
general relativity, then in the low energy {imit this induces on M, a metric, and
a set of scalar and gauge fields, the latter coupled to the metric in a similar

way to the Yang-Mills couplings. Despite some phenomenological difficulties, it
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is believed that these theories, or some of their modified versions, contain good
indications of a geometrical origin of gauge interactions, and that, therefore, the
4-dimensionality and trivial topology of space-time is probably not correct at
small scales.

Third, one could argue that, if we hope to eventually reduce physics to geom-
etry (although, somehow, not everybody does), in order to reproduce the known
phyéics, which is not scale invariant, the geometry has to include a fundamental
length scale, and such a scale cannot arise from a smooth manifold (at least of
relatively simple topology), with a dynamical metric, without any further struc-
ture.

Finally, the belief in the ultimate simplicity of nature makes a picture based
on the comtinuum of real numbers, with lots of other structure added on, very
suspicious: as Finkelstein [6] asks, why is space-time so complicated? We will
see another class of conceptual reasons at the end of this section. The main
practical reasons, however, that initially got physicists to start worrying about
the correctness of the comventional description of space-time, have to do with

difficulties in quantum field theory and general relativity.

Technical reasons

In quantum field theory, calculations of amplitudes for physical processes
yield infinities, which in some cases can be removed, by a combination of more or
less ad hoc techniques, regularization of divergent integrals and renormalization
of various quantities defined in the theory. The source of the problem in most
cases lies in integrals in momentum space which extend to arbitarily large values
of the momenta, Le., to arbitrarily small length scales. The simplest way to
make the integrals converge is to introduce a momentum cutoff: a fundamental

length scale. This scale could, but does not have to, be identified with “the
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smallest possible length”: it just indicates that something in the structure of the
theory changes at small scales. For some theories, results of calculations may
not depend crucially on how the change occurs, as long as we introduce in the
parameters of the theory a suitable dependance on the above length scale (we
call these renormalizable theories), whereas for some other theories this effective
approach does not work: there is no fundamental reason for preferring one kind of
theory over the other, and in both cases there is something about their small-scale
behavior to be understood.

In general relativity, starting with the Schwarzschild solution for a black
hole, an isolated object, and the Friedmann solutions in the cosmological context,
singularities in the metric have been often appearing in the solutions of the field
equations. While initially it was thought that these were a spurious consequence
of the high degree of symmetry of the exactly known solutions, the singularity
theorems of Hawking and Penrose proved that singularities will generically arise
in many physically reasonable contexts. But a singularity signals the end of the
region of applicability of Einstein’s equation: the evolution of the gravitational
feld in its future light cone is completely undetermined. Thus, because of our
reluctance to accept that points of infinite curvature can actually arise, and
given that we would like to have, as an wltimate theory of gravity, a theory with
2 wider range of applicability, it has become important to look for ways to avoid
singularities. From previous experience, we can expect a quantum theory fo
smooth out the singularities of its classical counterpart, just like it avoided the
classical problem of an electron falling on the atomic nucleus by “spreading out”
the electron to a wave function with support on an extended region around the
nucleus. In our case, it seems natural to expect it to spread out the curvature

that classically leads to a singularity over an extended region, and we are led to
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look for a quantum theory of space-time geometry.

First proposals

These difficulties were realized a long time ago. In particular, while a suf-
ficient understanding of singularities in general relativity to appreciate the gen-
erality of this phenomenon in the theory was developed only in the late 60’s,
quantum field theory evolved rapidly enough that in the 30’s physicists were al-
ready looking for fundamentally discrete structures for spac;e—l:i]:ne,T which would
help to solve the divergence problems (see, e.g., Ambarzumian and Iwanenko [2];
Silberstein [20]; Snyder [21}; Hellund and Tanaka [9]). These very first theories
were not Lorentz invariant, since, e.g., in some cases space was made discrete,
bui_; time remained continuous, and soon new ideas came out which attempted
to avoid this shortcoming. Schild (18] proposed a model in which space-time
is a discrete set, obtained as a regular lattice in Minkowski space, which is left
invariant by a discrete subgroup of the Lorentz group. The problemn with this
proposal is that one did not recover in some large scale view the invariance under
(a good approximation to) the full Lorentz group. For example, in the simple
case of a cubical lattice in 3+1 dimensions, the allowed discrete boost parame-
ters are 8 = (n*—1)}/?/n, where n is a non-negative integer, so, in particular,
Bynin = V3 /2. One does not see therefore how the Lorentz symmetry group can
be recovered in a continuum approximation, although it is still possible to acco-
modate slowly moving particles in any spatial direction in the theory, since the
spatial projections of the integer (null or) timelike vectors are dense in R3, and
one can imagine a slow motion arising in a similar way to the Zitterbewegung of

a Dirac particle.

%+ It is amusing to notice that it was thought that this discrete structure would show up at
scales of the order of the nuclear dimensions.
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Coish [4] proposed a more elaborate structure in which space-time points are
specified by giving their cartesian coordinates, which however are not real-valued,
but take their values in a very large but finite commutative field, i.e., the Galois
field of prime order GF (p). This proposal is not equivalent to an infinite cubic
lattice in Minkowski space because of the periodic boundary conditions, but,
for an adequately huge p, a sufficiently large number of points will approximate
well some portion of Minkowski space: for p ~ 101081, we can get a reasonable
approximation to the usual geometry from 10~ 13¢m to 2-10° light years. All this
is again rather artificial, but the interesting part about it is that, if we consider the
«ILorentz” group of symmetries of the “metric form” —z2+ 23+ z3+123 (remember,
everything.is GF (p)-valued), its representations include 2 X 2 complex matrices,
which have an action of a (p-+1)-fold “covering” of this group, in a similar
manner to SL(2,C) as a double covering of the ordinary Lorentz group. The
generator of the extra transformations, which induce the identity of space-time,
and can thus be considered as gauge, is identified by Coish with the electric
charge. Although one should justify such an idéntiﬁcation by looking at the
couplings of the flelds involved, the essential idea is that one can look for the
origin of the internal symmetries observed in nature, in an alternative way to
ﬁle Kaluza-Klein program: from a discrete fundamental structure, which gives
these symmetries together with general space-time covariance in the continuum
approximation. |

Several other similar ideas at the same “pre-quantum gravity” level have been
proposed. Some of them (e.g., Coxeter and Whitrow {5], Hill [10}, Ahmavaara
[1]) are roughly along the same lines as the ones described above, others (e.g.,
Takeno [25]) are more quantum mechanical. However, I will not go into their

details here.
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Comments

The above proposals might rid us of the ultraviolet divergences of quantum
field theory, although, from the point of view of gaining a deeper understand-
ing of the physics involved, they do so in a rather trivial way. But, besides the
question of whether they reproduce the correct “continuum limit”, the major
conceptual criticism they are subject to is that they do not incorporate the spirit
of general relativity. Taken in a restrictive sense, this means first of all that
one should have tried to incorporate not just Lorentz invariance, but full dif-
feomorphism invariance in the discrete theory.? To implement this invariance,
one could propose a theory of space-time as a lattice with a “random” structure,
in which the distances between sites are not fixed, but dynamically determined,
and which is not embeddable in a manifold with a metric fixed a priori. Theories
of this kind, based on Regge calculus, a tool invented for doing calculations in
a discretized version of general relativity, have been proposed, e.g., by Lee [74]
(who introduced the concept of random lattice), Itzykson [72], and Lehto, Nielsen
and Ninomiyva [13]. One first chooses a “link structure” for the discrete set of
points, which gives it enough rigidity that it already determines the topology
of any continuum space-time manifold which will ultimately approximate it—in
practice one usually makes it into 2 simplicial complex—, and then prescribes a
dynamical theory which assigns lengths to all the links between points. Going

over to the continuum, these lengths give the metric on the manifold.

4+ To put it another way, one can hardly expect to find the correct fundamental description
of “pregeometry” by starting from symmetry considerations, just like one would not have
found the description of physical geometry given by general relativity if one had followed,
instead of the Riemannian approach to geometry, that of Klein’s Erlangen Programme,
even though the latter had been fruitful in other areas, and it later proved itself useful
again in the study of symmetries arising in the theory, and in particular in the use of fiber
bundles. {One might say that general relativity really is 2 theory with the diffeomorphism
group as symmetry group. But the concept of symmetry involved is not derived from known
symmetries of euclidean geornetry; rather, it is a generalization of the enclidean concept to
a new structure.)
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.But there is a deeper sense in which one can try to follow the spirit of general
relativity. General relativity taught us that the metric of space-time is not to
be thought of as a fixed backgroupd on which physics takes place, but it partici-
pates in the dynamics. However, the space-time metric is just one mathematical
structure sitting on top of a tower of constructions, and it becomes legitimate
to ask why these other constructions should be taken as part of the background,
fixed once ang for all. One can thus ask a similar “tower” of questions: “Why is
the space-time metric of lorentzian signature?”, “Why does there exist a metric
at all?”, “Why can’t the differentiable structure and topology of space-time be
dynamical entities?”, “Why is space-time four-dimensional?”, “Why does it have
a differentiable and topological structure in the first place?”

Once we start asking those questions, almost in the same spirit we might ask:
“Why are the internal symmetries we observe in nature present?”. Although this
question might seem less geometrical than the previous ones, we have already
had hints that the distinction may not be all that clear-cut. We might then
continue with more “phenomenological” ones, like: “Why is the cosmological
constant so small?”, “Why is our universe so large?”, “Why aren’t there holes in
space-time?”, “Why are there (nearly massless) fermions?”.

In the context of these questions, our search for a more fundamental structure
for space-time takes on a whole new meaning, and we see why trying to base a
theory on continuum language, on concepts like lattice embedded in Minkowski
space or discrete subgroups of the Lorentz group, and in general keeping ideas
borrowed from manifolds or 4-dimensionality in our models, won’t do. What
is needed instead is a “new substance”, with which to build a theory of space-
time. We use the term “substance”™ to stress the fact that this theory should

make no reference, in its formulation, to facts that the questions above seek to
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explain (except for motivational purposes), and should be logically independent
of the concepts used in them. It can be thus compared to the introduction of
new particles, with dynamics of their own, in a new fundamental description of
matter.

The search for such a substance implicitly assumes that there is a real phys-
:cal basis for the geometric structure we assign to space-time. This is contrary
to the conventionalist view of geometry (see, e.g., Reichenbach [65], Grinbaum
[64]), according to which we can assign any geometry to space-time (e.g., the
..metric does not need to have a lorentzian signature, or be related to the matter
content by Einstein’s equations, and some authors—e.g., Sexl [66]—make sim-
ilar considerations even rega;din‘g the topology and dimension of space-time),
as long as we choose appropriately our physical laws and prescriptions for as-
sociating geometrical quantities with measuring rods and clocks. In this view,
choosing a geometric structure is something like choosing coordinates or a unit
system, and the choice is just a matter of convention, although the one made in
general relativity is the most convenient. If we can derive a geometric structure
of the continuum in a natural way from a new substance, we will have a stronger

argument than the continuum theory can give (see, e.g., Barman [63]) for the

more empiricist view of physical geometry.
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1.2 Quantum gravity and radical approaches to gpace-time structure

Questions along the lines of those posed at the end of the previous section had
been asked long before the appearance of the physical motivation for them. Par-
ticularly suggestive for us is Riemann’s query: “Why is there a spaﬂal metric?”.
Riemann [19] attempted to start answering the question by remarking that if
space were not a “continuous manifold” but a “discrete manifold”, then there
would be a natural notion of volume, or more precisely of ratio of volumes. Al-
though one cannot construct a metric without additional structure just on a
discrete set of points, the mere fact that space was discrete would explain the
existence of a notion of volume: the number of points contained in a given region
of space. Riemann’s idea went unnoticed to physicists, still busy as they were
in discussing whether even matter is discrete and made of atoms or not, and at
the same time it preceded the development of the notion of space-time metric,
without which, as we can see a posteriori, it could not develop into a prescription

for deriving even just the spatial metric from a “discrete manifold”.

Nowadays, a promising theory one can turn to, in the attempt to answer
those questions, is quantum gravity, as we can see from the general remarks on
quantum gravity and on singularities in general relativity I made in the previous
section. In practically all the work on classical general relativity, and most of that
in quantum gravity, however, there are still background elements which have not
“joined the actors” in the play of dynamical ex"c;lution: the differentiable struc-
ture of the manifold, its topology, its dimensionality, its very manifold nature.
This is largely due, in addition to the technical difficulties, to the rather differ-
ent situation in which quantum gravity has found itself, as compared to most

other developing physical theories. According to Taketani [70], the evolution of
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a physical theory can be schematically divided into three stages: an initial stage
in which the phenomenal effects of a particular “substance”, or type of matter,
are observed; a second stage in which the new substance in question is clearly
recognized; and a final stage in which the comprehensive dynamics characterizing
this substance is understood.T Quantum gravity, however, is forced to skip vir-
tually all of the first stage and tackle the second and third stages simultaneously,
hoping that the resulting theory will enable us to recognize with hindsight what
features of already-known physics can serve as its “phenomenology™.

In a sense the situation in which quantum. gravity finds itself is a conse-
quence of its lack of phenomenological basis, but the latter may not be merely
a coincidence due to inadequate experimental techniques. Whereas some gquan-
tum gravitational effects (related, e.g., t0 black hole evaporation or properties of
gravitational radiation) might in principle lead to observations, they are rather
indirect and cannot point in a clear way to the “new substance” involved. Possi-
bly, all characteristic effects of the latter will, even in principle, be observable only
in terms of the “higher-level structures” used to describe macroscopic physics,
and we might not be able to separate the identification of the new substance
from the understanding of the mechanism by which it effectively gives rise to
such structures, i.e., the understanding of its fundamental quantum dynamics
and its “semiclassical approximation”.

To some extent, the distinction between the second and third stages of Take-
tani's scheme corresponds to that between kinematics and dynamics of a the-
ory, and the remark in the previous paragraph reminds of the suggéstion that
the latter distinction may also no jonger be that sharp for quantum gravity,

i.e., that the dynamics of quantum gravity may be built in, intimately woven

t A good recent example is the theory of hadrons, with the three stages being respectively,
the observation of resonances, the discovery of quarks, and the formulation of QCD.
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into its kinematical structure. A theory which realizes this—not very precisely
formulated—possibility has been looked for by physicists for some time already,
attracted by the idea of bringing about such a conceptual unification in the prin-
ciples of physics, but we are still far from a satisfactory proposal. As we will see
shortly, even some of the most radical proposals for the fundamental space-time
structure, including our own, have not been sufficiently developed yet, or have
been constructed with an essential distinction between a kinematical part and a
dynamical, quantum mechanical one.

The considerations above are not meant to detract from the value of those
proposals, since, to & great extent, the possibility of making small modifications
to one aspect of general reiativity, while retaining enough of its usual structure to
allow us to use many known results and techniques, is what has allowed us to get
some clues about features that a full theory of quantum gravity should possess.
Among the many illustrations of this fact, let us see a few which are directly
relevant for us. The dynamics of Kaluza-Klein theories, including their super-
gravity variants, takes place in fixed background manifolds, but of very different
topology from the usual one: although these theories are relatively “harmless”
from the point of view analyzed here, as 1 remarked earlier they have introduced
and “popularized” the idea +hat four may just be an effective dimensionality of
space-time. Many studies have been done by now on topology change in general
relativity (see, e.g., Geroch {33], Tipler [39], Yodzis {41], Sorkin [36], Borde [31]
and other references therein). Most of the results in the subject are of a kine-
matical kind, i.e., they are topological conditions under which a space-time will
exist which interpolates between two spacelike hvpersurfaces of different topoi-
ogy, or they give restrictions on the curvature of the manifold, which, if we

require the metric to satisfy in addition Einstein’s equation, become restrictions
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on the matter stress-energy tensor. We have however obtained many indications
about how topology changing processes—-essentially quantum phenomena—will
appear in the cemiclassical limit, their connection to causality violations, and
the possibility of using them to create particles out of space-time geometry, in
the form of geons, “kinks” or “knots” in space (see, e.g., Sorkin [37]).Jr Several
ideas about quantum geometry gimilar to those about geons were formulated
by Wheeler [40], who gave fancy names to various effects expected to arise in
his gebmetrodynamic vision. One of these is that of space-time foam, in which
space-time appears smooth and nearly flat only at large scales, but is actually
highly curved and has 2 complicated, continuously changing and irregular topol-
ogy at Planck scales, although it is still described by a differentiable manifold.
This idea was later developed further by Hawking (34!, who showed that in the
so-called euclideanized path integral approach to quantum gravity the dominant
contribution to the amplitudes could come from manifolds “with about one unit

of topology per Planck volume”.

Despite what was said above, some truly “hackgroundless” ideas on how to
deal with the question of a more fundamental structure for space-time have ap-
peared. We now wish to describe some of these ideas. The starting question of
course is: what feature of our conventional picture of space-time can be isolated
as most fundamental and generali_zed, and what will this picture consequently be
replaced by? The attempts to answer this question may differ, roughly, in two
aspects. On the one hand, they may be more oI less geometrical, as opposed
to algebraic, in the sense that the elements of the basic structure they propose

have a more or less direct correspondernce with local elements of geometry. On

+ Here by the term “geon” I mean a particle-like obje'ct made out of non-trivial spatial topol-
ogy, as opposed to what Wheeler called a “geon”, which is essentially 2 lump of gravitational
radiation, with no special topology involved.
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the other hand, they may differ with respect to the amount of emphasis placed
on incorporating into the structure parts of quantum mechanics from the very
beginning, without formulating first the kinematics of the theory and then ap-
plying some quantization method. The first distinction probably has a mostly
practical value, in the sense that a more geometrical proposal may be easier to
work with {both because it is intuitively more immediate, and because one can
see more directly how to implement in it the features one wishes to recover in
their continuum approximation, like Jocality—more on this in §3.2), but it may
not be as meaningful conceptually, since all proposals in the end are some kind
of abstract mathematical structure, whose elements can never be identified with
geometrical points. On the other hand, quantum mechanics by itself seems to be
more of a logical-algebraic structure than a geometrical one, and there is thus a
tendency for theories that do put in quantum mechanics at the beginning to be
less geometric in character. A further potential distinction might be the extent to
which “ingredients” of our continuum physics other than the purely geometrical
ones, 1.e., other fields and their symmetries and interactions, are seen to emerge
from a unifying fundamental structure (in practice, though, none of the ideas
we will see deals directly with this question). But all proposals agree in using
simplicity of the fundamental structure as one of the criteria, and try to reduce
all basic calculations to simple operations like counting: ultimately, physics could
be reduced to combinatorics. Let us keep these aspects in mind while reviewing

the proposals below.

Penrose’s spin networks
One of the more fundamentally quantum mechanical ideas is that of Pen-
rose’s [18] spin networks. Its main goal is to base all of quantum physics on

simple—in principle—combinatorial rules, and free it from the notion of coniin-
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uum of real and complex numbers, even as regards the use of complex-valued
probability amplitudes associated with physical processes or histories. The sim-
ple model described by Penrose is a first approximation to a full theory—still
to be developed—of space-time geometry as emerging from a more fundamental
structure, although some qualitative arguments can be given with regard to a
more complete theory.

In the model, the space-time notion that is recovered is that of spatial direc-
tions around various points. One thinks of the universe as a large spin network,
which can be represented by a (not necessarily connected) graph with three edges
or untts per \-fertex (with some units terminating at two vertices and some having
a free end), in which to each unit is associated an integer, the spin number, to be
thought of as its total angular momentum in units of h/2. When the spin of a
given unit is large, we can think of this unit as defining some axis in space. Since
we are using total spin, it does not give us, by itself, its direction, but we can give
a prescription for calculating its angle with respect to another nearby large unit,
with some uncertainty depending on properties of the interconnecting network.
In this way, appropriately chosen local subnetworks, in which large units are
connected in such a way as to give small uncertainties give rise to local notions
of direction, seeds for the construction of a local notion of flat geometry. The
way in which one subnetwork is related to another one tells us how the directions
defined by one are related to those of the other. Roughly speaking, we can think
of the units and the directions associated with them as geodesics, and a local set
of directions, the “intersection” of geodesics, as a (fuzzy) space-time point, even
if we cannot yet talk about its position. Typically. the angle between a given di-
rection in a local geometry and one in another geometry will not be well-defined,

but will appear as “fuzzy”. This effect can be attributed to curvature present
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between the two regions, which manifests itself in the bending of geodesics.

How does dynamics come into the picture? There are rules which tell us
what the probability is of having 2 certain value for the spin number of a free
unit in a network, once all the other spin numbers are known. These rules, which
essentially reproduce the quantum mechanical rules for combining angular mo-
menta (e.g., for a network consisting of three units meeting at a vertex, they give
the quantum mechanical rule for addition of angular momenta), assign different
frequencies of occurrence to various subﬁetworks in the universe: they are the
physical laws. The rules themselves are not very simple to apply, and the sim-
plicity of principles one has obtained is paid for in complexity: to calculate the
angle between two units of a given subnetwork or its probability or occurrence,
one has to calculate so-called “values” and “norms” of parts of it, in which the
combinatorics can get complicated, and for which Penrose has developed a special
algebra of “binors” (for detalils, see {18d]).

Thus, the proposal claims to build quantum dynamics into the rules for mak-
ing spin networks. There is still however a clear distinction between kinematics
and dynamics, since the combinatorial probability rules are added on to the
prescription for drawing allowed networks, rather than following naturally from
them. Furthermore, the 3-—di.mensiona}i_ty of spacé is also added by hand, both in
the probability rules and—probably—in those defining the allowed networks.

The model was develéped in this way to take advantage of the properties of
angular momentum, chosen as the fundamental concept because, besides being
intimately related to the geometry of directions, its values are integers, multiples
of a fixed unit, ﬁ/?, and calculations done with it even in ordinary quantum
mechanics are of a combinatorial nature. As a consequence, the requirement that

the theory should account for the existence of spin—% objects—which, as Penrose
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stresses, is essential for a fundamental theory—is satisfied from the start.

The main reason why this is only a first model is that it assumes the units
are all at rest with respect to each other. A more complete, relativistic one, in
which relative motion is allowed, would probably illustrate how to construct the
notion of position and distance as well as that of direction. At the same time,
such a model might clarify the reason for interpreting the “spin number” of a
unit as its angular momentum, whi-ch presently, if one consit_iers just the theory
in its abstract form, looks put in by hand.

This more complete model has not been developed, however, and work on
the above ideas has led Penrose to the concept of twistors, which play, with
respect to the conformal group, a similar role to that played by spinors with
respect to the Lorentz group, and could therefore in principle lend themselves
to a basically combinatorial formulation of conformal geometry, similarly to the
spin network formulation of riemannian geometry (although the twistor theory
that was developed is essentially based on complex analytic manifolds, rather

than on combinatorial ideas). For an attermnpt to use the idea of a spin network,

see, e.g., Hasslacher and Perry (8.

Geroch’s Einstein algebras

This proposal [7] {of an algebraic, non fundamentally quantum mechanical
type) is motivated by +he idea that the very notion of event or space-time point
will probably cease to be meaningful in quantum gravity, and therefore one can
try to formulate a theory which does not mention space-time as a collection of
points at all, except as a derived concept. The starting observation is the “well-
known” fact that the differentiable structure of 2 manifoid M can be recovered
from the knowledge of the ring R of smooth real-valued functions on it: each

point of the manifold can be identified with a maximal ideal in the ring, namely
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the set of functions which vanish there. As Geroch points out, given this ring R,
one can characterize in terms of it vector fields, tensor fields, derivative operators
{provided R has a distinguished subring S ;somorphic to the reals, which is to
be thought of as the constant functions on M, and is used in defining derivative
operators in terms of R}, and metrics (i.e., symmetric isomorphisms between the
module D of derivations on R and its dual D*, on which we want to impose
some additional requirement, to ensure that the operation of index contraction
on tensors be well-defined). This structure is called Einstein algebra.

Geroch’s idea is to consider such an algebraic structure as more fundamental
than that of smooth manifold. Given any commutative ring R with the structure
above that makes it an Einstein algebra, we can write down a condition which
translates the Binstein equation in terms of it: the {once) contracted Riemann
tensor (defined in terms of commutations of derivative operators) vanishes, or
equals some desired tensor. If the algebra is one that can be constructed from a
manifold, then this is nothing more than a rewording of Einstein’s equation, But
this condition can be imposed on the algebra independently of whether it really
represents the ring of functions on & smooth manifold, and one could hope to be
able to thus generalize classical general relativity to a case in which there is no
space-time manifold.

This approach was never developed beyond the cl.assical “equation of mo-
tion” stage, but, before one tries to develop some gquantum framework for it,
what remains to be checked is whether one actually gains something by consid-
ering Einstein algebras as a fundamental structure. It is possible, in fact, that
the conditions required in their definition are so strong that they force the exis-
tence of an underlying manifold (see in this regard some related work by Yodzis

{29]). If this were the case, a way to push Geroch’s program further might be
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to relax these conditions in a suitable way (a possibility which seems worth ex-
ploring is whether they would be automatically relaxed upon “quantization”).
A different possibility might be to apply Geroch’s “algebraization” procedure to
'a formulation of general relativity which, already at the geometrical level, lends
itself to a generalization, like the “new variables” approach to classical and quan-
tum gravity of Ashtekar [30]. In this formulation, the constraint and evolution
equations of general relativity are recast in a form which uses, as variables, an
SU(2) spinor connection and a soldering form between SU(2) spinors and (spa-
tial) tangent vectors defined on a spacelike hypersurface. The new form of the
equations is equivalent to the traditional one when the soldering form is actually
an isomorphism between the two spaces, but it is still meaningful even when the
soldering form becomes degenerate. In that case the geometric interpretation of
the equations changes, and it is possible that they can be taken to represent a

more general situation, like topology change.

’t Hooft’s proposal

In the less quantum mechanical, more geometrical proposal of ’t Hooft {27],
the fundamental structure is a discrete set of points, endowed just with a dy-
namically determined causal structure. This comes in the form of a partial order
relation, in which the statement that an element is “greater” than another ele-
ment is taken to mean that it is causally influenced, i.e., it lies to the future, of
the latter. For convenience, using our own terminology, I will call such a structure
a causal set.

The basic motivational observation is that, in the continuum, a causal struc-
ture is equivalent to a conformal structure. i.e.. all of the metric except one
“component”, the local volume element or conformal factor, while a discrete set

has, as Riemann had already remarked, 2 natural notion of volume, given by
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simply counting elements. 't Hooft points out that in fact in Minkowski space
the metric, in the form of the straight line distance between any two points, can
be simply expressed directly in terms of the causal structure and volumes (I will
come back to this in §2.5). Now those expressions are meaningful for any set
where causal relations and volume element are defined, in particular for causal
sets, although in general we do not expect the “distances” thus defined to cor-
respond to any notion coming from a metric on a manifold. However, we might
expect that the causal sets which are “dynamically preferred” will admit a contin-
wum “limit”, in the sense that they are embeddable in 4-dimensional Minkowski
space, the relations between the points agreeing with the causal relations induced
on them by the Minkowski space metric 144, and the distances calculated using
the number of embedded points as volume agreeing, to some degree of accuracy,
with those calculated using the metric volume.

Although ’t Hooft did not have a concrete proposal for causal set dynamics, he
remarked that the action would have to be a nonlocal expression, since discretized
“general covariance” would force to treat in the same way all pairs of points in
the lattice. This remark is correct if we replace “a1] pairs of points in the lattice”
with “all pairs of causal nearest neighbors” (general covariance does not prevent
us from using the available causal structure, just like in the continuum we are
allowed to use the metric when we write down the action!), which still include

pairs of very “distant” points.

Myrheim’s statistical geometry

A very similar {but independent) proposal to 't Hooft’s was made by Myrheim
116] (and by Sorkin [25]; Serkin’s idea is the one on which our framework is based,
so T will not describe it separately here), motivated by the same observations and

with the same basic structure. Of all the previous approaches to a fundamental
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space-time structure, Myrheim’s is the one that has been most developed along
the lines of the framework I will discuss in the following. Although he also did
not discuss dynamics directly at the causal set level, Myrheim developed further
the “kinematical” aspects, giving a construction for recovering the differentiable
structure and metric on a manifold from its causal structure and volume element
(which can be hopefully extended to discrete causal sets), and a (necessary, but
not sufficient) condition that can be used to determine whether a causal set is
embeddable in a space-time of a given dimensionality. Implicit in this condition
is the idea that space-time dimensionality may only be an approximately defined
concept, which could vary with length scale, and/or not be well-defined at some
scales. Simple counting arguments then tell us that it is unlikely for a causal set
to be embeddable in only 1 dimension (“phase space” says it is unlikely for a set
consisting of many elements to have precisely that causal structure which makes
it totally ordered), or in a very large number of dimensions (which would require
a very “intricate” causal structure, as we will start exploring in chapter 2), but
the precise dimensionality will have to be determined by more precise dynamical
considerations.

As regards dynamics, Myrheim recasts the continuum vacuum Einstein equa-
tion in terms of volumes and the causal structure. We will come back to the
details of Myrheim’s proposal in the relevant sections of chapters 2 and 3, after

the necessary concepts will have been introduced.

Other proposals

There are (at least) a couple of other approaches which would be worth
describing, but to which I shall devote only a few words. The first is the program,
which reminds somewhat of Wheeler’s {see MTW [53}, box 44.5) “pregeometry

as propositional calculus”, undertaken by Finkelstein (before Wheeler’s idea) in
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a series of papers [6]. Unfortunately, I do not fully understand these papers,
but a summary of my understanding is the following. The central idea is to put
some notion of quantum logic at the basis for the construction of space-time,
The latter is made of fundamental pieces, “quanta of time” or chronons, each
one of which is generated by the “previous” ones using a set of logical rules, the
discovery of which is what “breaking the space-time code” consists in. These
space-time units form a gquanium space, a #-algebra Q of operators on a Hilbert
space, and they come equipped with a partial order, which is just the order of
generation: space-time is a quantum causal space, i.e., 2 quantum space with a
causal relation, where a causal relation is a transitive quantum relation between
objects of Q. The task is to first discover the abstract, logical skeleton of the
spac'e—tirne code, and then transiate it into a procedure for building up operators
in Q, in the algebraic quantum language. The method used in this translation is
what Finkelstein calls algebratc quantization.

The second program is that of constructing a theory of strings without a
background, and several proposals have been made along these lines (some of
the first references are [12] and [9]; see also [13]). I cannot comment on them,
however, since I am not familiar with them.

The germs for a different approach lie in some developments in the study of
quantum gravity in the already mentioned new variables. Solutions of some of
the quantum constraints of the theory have been found by Jacobson and Smolin
[35] in the form of states which have distributionai support on fields concentrated
on loops in the reference 3-manifold, and it is speculated that geometry (at least,
_S-geometry) could arise in some sense as the superposition of many of these “loop
states”. Obviously, this is not yet a precisely formulated idea, and a lot of work

has to be done to construct states which satisfy all the constraints, to investigate




1.2 Quantum gravity and radical approaches to space-time structure 24

in what sense they might be the most general solutions of these, and how they
could be characterized independently, without using a 3-manifold to construct
therm.

Finally, another attempt, besides Finkelstein’s program, has been made by
Szabo [26] to build a fundamentally quantum mechanical theory, based on a non-
distributive generalization of the lattice of space-time subsets, with a notion of
causal structure defined on it. What Szabo tries to incorporate in his proposal is
fhe non-Boolean nature of the lattice of propositions about a physical system in
quantum mechanics (see, e.g, Jauch [77]). For other ideas, see also various papers

contained in the volumes edited by Castell, Drieschner and von Weizsacker [74].

Comments

When one looks at the ideas above, one sees that there are some recurring,
overlapping themes. Let us summarize and elaborate slightly on some of these:
(a) Discrete sets seem to be natural candidates for underlying sets of space-time
structure. One avoids first of all the fact that all regions of space-time have
“the same number of points”, as in the continuum: which is to say that discrete
sets have an intrinsic notion of volume. The “intrinsic metrical amorphousness”
of the continuum, besides being unsatisfactory by itself, has supported to some
extent the conventionalist view of geometry (for a discussion, see, e.g., Torretti
{71], §7.2). Furthermore, discrete sets are in principle simple to do calculations
with;
{b) 1t seems possible to derive the notion of space-time, and its geometrical
properties including the metric, from other structures, which a priori might not
even be geometrical in nature;
(c) The space-time one starts with, or derives from some other structure, does not

need to be 4-dimensional or have a simple topology, and indeed these attributes
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don’t need to be defined, as long as there is a procedure for recovering, as effective
large-scale geometrical properties of space-time, those we are accustomed to;
(d) A fundamental theory has to account for the existence of spin—% particles,
as well as the other particles and their symmetries; it is natural in particular to
view spinors in some sense as more fundamental than tensors, since tensors can
be “broken up” into spinors, the latter are also closely related to the conformal
structure, and spin-1/2 particles (especially massless ones) are hard to get from
geometry;

(e) A causal structure of space-time is a good candidate for a more fundamental
structure than the metric itself; in particular, in the continuum case, as we will
see, it uniquely determines the topological, differential and conformal structure,
and it is oﬁly compatible with a metric of lorentzian signature; furthermore, it
is naturally related tb spinors (the geometrical interpretation of a spinor—up to
a sign—at a point £ € M is that of a null lag—i.e., a null line in the Minkow-
ski space Ty M, together with a half-plane bounded by this line, at least in 4
dimensions), it is simpler than the metric, and philosophically more appealing;
(f) As regards quantum dynamics of the “new substance”, Wheeler [72] put it
this way: “Surely the Lord did not on Dey One create geometry and on Day Two
proceed to ‘quantize’ it. The quantum principle, rather, came on Day One and
out of it something was built on Day Two which on first inspection looks like
geométry bﬁt which on closer examination is at the same time simpler and more

sophisticated.”
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1.3 Our program

I want to examine here a proposal we have developed for the fundamental struc-
ture of space-time (at level 2 of Taketani’s scheme, with some discussion at the
third level) which incorporates several of the ideas described in the previous
section. In particular, we want to base the mathematical description of a fun-
damental theory on simple operations like counting, i.e., on combinatorics, and
to consider the causal structure as the feature of macroscopic geometry most
directly related to the basic structure. I will argue that, if the new structure
has a discrete underlying set, in addition to satisfying our first wish, we gatn
information with respect to the situation in the continuum case: all of the metric
of the space-time manifold which approximates our structure will be recovered,
and not just the conformal metric. It will be one of our major tasks for the future
to formulate precisely this conjecture and prove it.

We thus propose that the matter underlying space-time has the structure of
what we will call a causal set: a discrete set of elements with a partial order
relation, which will be considered the “dynamical variable” of our theory. We
will not, strictly speaking, attach any interpretation to this partial order relation,
since it is based on a new substance, which does not have any precise correspon-
dence with any large-scale concept. Loosely speaking, however, we will identify
the structure with a causal order, which specifies which elements of the causal
set, if we think of them as “events”, are to the past and to the future of any given
element, and which are unrelated to it. (This is similar to what happens in the
kinetic theory of gases, where on large scales we use the notion of temperature,
arising from the microscopic motion of the gas molecules, but we do not call
“temperature” the kinetic energy of single molecules.)

We can think of space-time as being a causal set, although a proper quantum
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mechanical treatment of its dynamics will imply that what we observe as physical
space-time is not just one causal set but a whole class of them, in analogy to the
fact that we cannot associate a single trajectory to the motion of a particle in
quantum mechanics. The reason why space-time appears to us as a continuum
is that, to this collection of dynamically preferred causal sets is associated an
approximating smooth manifold M, in which the discrete elements of each causal
set appear as points uniformly “sprinkled in” with Planck density (we will see
that this statement should actually be modified to allow such an approximating
manifold—notice that I will never talk of a continuum “limit” —to be defined after
a suitable coarse-graining of the causal set has been performed). The causal set
uniquely defines a(n approximate) lorentzian metric on M compatible with it in
the sense that the intrinsic order of the causal set agrees with the partial order
induced by the metric on the sprinkled points. Since the length scales at which
we perform all our measurements are much larger than the Planck .length £p,
we can never directly notice this discreteness, and it is a good approximation to
consider space-time as a manifold for all practical purposes.

When we talk of dynamically preferred causal sets, we have in mind a formal-
ism for dynamics based on some form for the action or amplitude for individual
causal sets, whose value will be calculated by using just combinatorics (every-
thing is a pure number), and with no adjustable parameters. In this regard, lef
us remark on a question which frequently comes up when one starts thinking
about this approach to space-time geometry. We saw that the manifold picture
of space-time is expected to break down at scales of the order of the Planck
length. It might seem therefore that the scale at which this happens is really a
parameter of the theory, and, even though we might not be saying it, we must be

sneaking in a length scale somewhere: afier all, how else would we recover in the
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continuum approximation a theory with dimensionful quantities, starting from
a purely dimensionless one based just on counting? Similarly, one might won-
der why, when we imagined the continuum as uniformly sprinkled with points of
the causal set, we stopped sprinkling points at Planck density, rather than some
other value. The question therefore is: what tells us how many cm (say) the
fundamental length is? |

But one can see that this is actually the wrong question to ask, motivated
by the habit of thinking in terms of the continuum as the fundamental structure,
with the causal set points sprinkled in a previously defined geometry. (Somewhat
paradoxically, this habit may be strengthened by familiarity with lattice gauge
theories.) The point, of course, is that a causal set which is well approximated by
a manifold defines there the natural unit of length: before the causal set, there
was no metric on the manifold (if indeed there had been a manifold!), no scale
with which to compare the spacing of points. The causal set theory (generalized,
if necessary, to incorporate non-gravitational matter) should ultimately predict
sizes of things, like atomic radii, wavelengths of radiation emitted during certain
transitions, and so on, in natural units, i.e., in spacings between points. But a cm
is just a conventional name for, e.g., a certain number of wavelengths of a certain
kind of radiation, so the real question one should ask is: how many natural
units will a conventional one like a cm turn out to be? This is the question
whose answer; on dimensional grounds, we expect to be that the natural unit is
approximately £p = 1.6 - 10~ 3¢m.

We cannot yet s;'-yy whether it will be necessary to add further siructure to
causal sets to account for the presence of the matter fields we observe in the
continuum, but I will discuss a mechanism that might produce these fields using

only the causal structure.




1.3 Qur program 29

As a word of caution, I will emphasize that, if we look for observational con-
sequences of the theory, we must not try to attach any operational meaning to
the individual relationships between elements in the causal set, nor relate the
intrinsic discreteness of the theory with any notion of discreteness that may arise
from ordinary experience or lab experiments: any observational consequences of
this framework will have to come through properties of the continuum approx-
imation to it, although it may be that some of these properties find their only

justification in the existence of the new discrete substance underiying space-time.

Preview

The rest of this thesis is organized as follows. .Chapter 2 is devoted to the
relationship between causal structures (in particular discrete ones, of course),
and geometric brdperties of continuum space—ti_mes, without dynamical consider-
ations, i.e., to a study of the “substance” we are proposing, at Taketani’s second
stage. In the first two sections I give some background on causal sets as mathe-
matical structures and on known results about continuum causal structures and
geometry of space-time. I then start the description of our own work on how,
and to what extent, a discrete causal set determines a continuum with its topol-
ogy, differentiable structure and metric. Particular attention will be paid to the
question of dimensionality.

In chapter 3, I will deal with aspects of “stage 3” for our proposal, giving a
framework for dynamics of causal sets, formulated in terms of a sum over histories
(“path integral”) approach to a quantum theory. I will discuss this choice of
gquantum framework (which in the previous chapter will have been implicitly
assumed in the discussioﬁ), and consider various possible choices for the basic
amplitude, and to what extent the theory will reproduce general relativity in

the continuum approximation. In this connection one could say that kinematics




1.3 Our program 30

for us will be the study of how each single causal set determines a continuum,
while dynamics describes how “cooperative effects” between many causal sets
determine which of these continua will be our large-scale space-time.

Some of what I describe here is not just my work, but collects the results
and ideas which have emerged in a collaboration with J. Lee, D. Meyer and
R.D. Sorkin, and, for some aspects, P. Jain. Some sections are essentially an
expanded version of our recent paper 3], while others include developments of

our proposal in new directjons, and/or new results.
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2. KINEMATICS OF CAUSAL SETS

2.1 Posets: some definitions and properties

The causal sets we want to use as fundamental structures in our theory are
well-known objects in combinatorial theory, since they belong to the category of
partially ordered sets. Let me then introduce this mathematical notion, and some
terminology associated with it, which will be useful in the following sections.
{(In this section, when a new term will be defined, I will normally use italics
if it is part of the standard combinatorics terminology, and quotes when it is
part of the physicists’ terminology, or our term. Combinatorics literature on
partially ordered sets—see, e.g., Rival [64], Fishburn [61], Stanley [65]—is filled
with definitions: of those, I will try to give only a few useful or potentially useful
ones for our purposes, and even so, they might appear as many; a few more will

appear, when needed, in later sections.)

Basic definitions
A partially ordered set (or poset for short) P is a set with an order relation
(for simplicity of notation, I will use the same symbol for the poset and the
underlying set), i.e., a relation, indicated by p < ¢, which is:
(1) refiexive: Vp€ P, p=<p;

(2) transitive: Vp,¢,7 € P, p<g=<r=p=<r;

(3) antisymmetric: Vp,g € P, p<g¢=q#Ap, unless p = q.

Notice that the third condition excludes the existence of “closed loops™. I p < g,

we say that ¢ follows p, or is to the future of p. The posets we will consider will
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always be connected and locally finite. Before we define precisely the meaning of

these terms, we need some more definitions.

The interval (or “Alexandrov set”, as we will call it in the context of causal
sets) A(p,q) defined by two elements p,g € P, with p < g, is the intersection of

the future of p with the past of ¢:

A(p,q) :=A{rlp<r <4} (2.1.1)

" An interval is a special case of (induced) subposet, a subset P! C P in which two
elements are related, p < g, iff they are related in P: l.e., P' has the order relation
induced by P. An element of P is called mazimal if there are no elements to its
future, and minimal if there are no elements to its past (a poset in general has
many maximal and minimal boints). A subset of P in which any two elements

are related (i.e., a totally ordered subset) is a chain.

There is in poset theory a notion similar to that of nearest neighbor for lattices
embedded in manifolds with positive-definite metrics: we say that an element ¢
covers p, or that there is a “link” between them, if p < ¢ and there is no r {distinct
from p and ¢) such that p <r < ¢. Let us indicate this relation by p < g¢. I should
remark that, for a general poset, there is no metric meaning associated with this
notion of closeness in the pa.rtia,l order, although, as we will see later, in some
cases it is related to a notion of closeness in a lorentzian metric. The concept
of a link, is, however, useful for the description of (locally finite) posets, since
knowledge of all links is equivalent to knowledge of all relations among elements:
p < ¢ iff there are elements ri,7z,...,"n such that p<ry<re< ... <ry<g¢.
This property of links can be used first of all to draw simple pictures of posets,
called Hasse diegrams, where elements are represented by points, and links by

lines connecting these points, with ¢ placed above p if p < g, to indicate the
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direction of the lines. {We will see below several examples of Hasse diagrams.)
Furthermore, the same property will make it easier for us to prove some results
about posets, since it guarantees that if two posets have the same links, then

they are equal (see, e.g., the “proof” of lemma 2, in §2.4).

We shall call “path” between p and ¢ a mazimal chain between these ele-
ments: any chain whose size can only be made to increase, by extending it to
the past or the future, if possible; in other words, a chain made of links, like
p<try <rg =< ... <rp,=<q in the previous paragraph. Two paths between p and
g need not have the same length (number of links), and we will call “maximal

path” one with the maximum length.

A connected poset is one whose diagram is connected, i.e., such that, given any
two elements, there is a set of paths which can be followed {(moving forward and
backward with respect to the partial order) to go “continuously” from one to the
other. A locally finite poset is one in which all Alexandrov sets are finite. From
here on, when we will talk of a “causal set”, we will always mean a connected,

locally finite poset.

Examples; number of posets and their realizations

Let me now give some examples of posets (recall that we specify only the

links between elements):

(@) the totally, or linear}j}; ordered set with N elements,
P_,i\r ={ag1=1,...,N|a; <ayy;t=1,...,N -1}
(b) the “fence” poset of size 2N,
Ply={aibi;i=1,...,Nja; < b ¥i; oy < by ¥i % 1};

(c) the “crown” poset of size 2N,

-ZCN = {a,-,b‘-; = I,...,N]a,— < by Vija; < b;_; Vi =£1; a1 < bN}.
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Some posets are more conveniently defined not by an abstract “presentation™ of

their structure as above, but by some realization, like in the following example:

(d) the poset Pgn, whose elements are the subsets of a set A of size |[A| =n > 1,
ordered by inclusion (the Hasse diagram of Pp»—figure 2.1.4—looks like a

cube in n dimensions};
We will see a few more examples of posets in later sections.

It is natural at this point to ask how many different posets one can construct
with N elements, and to look for examples of posets. The first question turns
out to be an unsolved problem in combinatorics: in fact the answer in known
only for N < 8, although an asymptotic formula for large N is known. The table
below gives, for N < 8, the number of inequivalent posets, Dy, and inequivalent
connected posets, Cp, that can be built from N points. (By inequivalent we
mean that we do not distinguish between posets which differ By a relabelling of
elements, i.e., we use what are somgtimes called unlabelied posets: in “physical”
terms, we will always talk about equivalence classes of posets under the action

of the permutation group, which is clearly irrelevant.)

4 5 6 7

1 2 3
Cn 1 1 3 10 44 238
Dy | 1 2 5 16 63 318 2045

(the connected posets up to N = 5 are drawn in figure 2.1.1). For N — oo, the

asymptotic behavior of the number of posets is

Dy~ C 2N2/4+3N/2 NN-N-1 . 2]\{2/4;—-.2'\.?'10g2 N+(3/2+1og, e)N—log, N’ (2-1.2)

where C = %Zizo o—i(i+1) ~ (.8059, for N even, while a similar expression—

with practically the same numerical value—gives C in the case of odd N. In
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All connected posets with up to 5 elements
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the same limit N — oo, most posets (i.e., to leading order in N) have diagrams
consisting of 3 “layers” of points, the top and bottom ones with N/4 points, the
middle one with N/2, with each point being connected to about half of the points

in its adjacent layers (Kleitman and Rothschild {63], and references therein).

Posets can be realized in different ways. In a loose sense we have already
seen one way of representing posets when we introduced their Hasse diagrams,
but we are now interested in showing that there are other (richer) mathematical
structures in which poset structures can be identified, and which thus provide
both applications of poset theory and means of visualizing some of their proper-
ties and definitions. In the framework of our causal sets, although the dynamical
theory can be abstractly formulated without referring to any realization, as we
will see, we often think of a poset P as realized in terms of points in a lorentzian
manifold (M, g@), with the causal relations induced by the metric reproducing
the order relations in P: i.e:, we have a map fiP — M, with flp)ed™ (f(q)) iff
p < q (J~ denotes the metrically defined “past” of a space-time point or region:
1t will be defined in §2.2). This is the reason why, in this context, we call {locally

finite) posets causal sets; we will call the above a “causal realization” of P.

But the same poset could also be thought of, e.g., as a collection of subsets
of some set X , with the inclusion relations between them reproducing the order
relations: i.e., we could have a map f: P — P(X), with f(p) C flgifp<4g
where P(X) denotes the collection of subsets of X. In particular, if X is a
topological space, the f(p)’s could be open subsets of X. Notice also that a
causal realization is actually equivalent to one of the second kind: if we identify
each point f{p) € M with the interior of its past light cone, we obtain a realization

of P in terms of subsets of M (light cones), ordered by inclusion.

As a third example, one of the common realizations of posets in combinatorics
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is as points in some R", in which the partial ordering induced by the coordinates
reproduces the order relations in P: we have a map f : P — IR", with i (p) <
fH(q) Vi iff p < g. This gives a “linear realization” of P. There may be other
physically interesting realizations of posets, besides the first two examples given
here. One such possibility, related to the so-called “Bergmann manifolds”, will

be briefly discussed in §3.5.

Parameters of posets; important subsets

It is now time for some more definitions, before we start to see what can
be done with posets. An antichain is any subset of a poset P in which no two
elements are related (it is what in physics would be called an “acausal set”);
whereas a mazimal antichasn is an antichain such that no further element can be
added to it: all other elements of P are related to some element in it (a “spacelike
hypersurface”). The width of a poset is the size of the largest (maximal} antichain,
and its height the length of the longest path. A join-independent subset of P is
o P' C P such that, for every p' € P, there is 2 p € P, with p 4 p, butpis
to the future of every other element of P (in particular, such a P’ is always an

antichain). The breadth of P is the size of its largest join-independent subset.

Although meaningful constructions with posets for us will only be the ones
which can be defined independently of any labelling of their elements, it might
be useful in some occasions to introduce labellings, just like it is often useful
to introduce coordinates on manifolds. A partial labelling can be obtained by
a function which slices a poset into anfichains, a positive integer-valued rank
function p on P, with (i) p{p) = 1ifpisa minimal element, (1) (p < ¢, p #
q) = p(p) < plg), and () Vo : 1< p < max(gep) Plg), Ip € P p(p) = 7 (often

the stronger condition p<g¢ = plg) = p{p) + 1 is required, but with it not all
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posets are rankable, and we wish to allow ourselves more freedom in the ranking
possibilities). One natural ranking defined for all posets is the following. Assign
p(p) = 1 to 21l minimal elements, and p{(p) = i to any element which becomes

minimal after removal of all elements of rank less than 1.

We have so far ;dentified “one-dimensional timelike” structﬁres in a poset
(paths), and «codimension-one spacelike” ones {maximal antichains). Another
simple object we will need later is a “loop”™: a pair of paths between two points,
which do not meet except at their endpoints. It is more difficult to identify other
structures, but one definition worth giving is that of a “null path”: a path which
is also the Alexandrov set formed by its endpoints (in Minkowski space, the only
points causally related to two null-related points are those on the null geodesic

joining them). A few of these definitions are illustrated in figure 2.1.2.
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Various kinds of subsets of a poset figure 2.1.2
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Operations on posets

Now that we are acquainted with posets we can ask ourselves, what can be
done, mathematically, once we have them: what operations can be performed
on posets, and which other mathematical structures can be defined just by using
partial orders? The second part will be postponed until §2.7, while, as regards
operations, once again we will need only a few of the many that mathematicians
have defined for posets {and we won’t use all of them, some I just give here
for possible future use). The simplest one is duality, which is what in physics
terminology we would call “tix:ne—reversaul”:Jr it is defined by P — P*, where P*

has the same underlying set as P, but the arrows are reversed:
p=<gqin P* iff ¢<pin P {2.1.3)

To combine two posets and produce a new one, we have several possibilities. In

the (cartesian) product of Py and Py, P; X Py,

(p1,p2) < (g, q2) H pr=q@ A p2 <. (2.1.4)

The cardinal sum Py + Py of posets is just their disjoint union (and gives always
a disconnected poset), and, together with the cariesian product, it makes the set
of all posets into a commutative semi-ring (or into a ring, if one formally defines
additive inverses). The ordingl sum Py ® Py is “P, sitting on top of Bi": its

underlying set is Py U Py, and

p<pepd Ml (p=<s 9 V (p<p q) V (pe P, q € P {2.1.5)

Of course, a trivial (but important in connection with the concept of coarse-

graining) way of obiaining 2 poset from ancther is as a subposet, as described

t Although it might be more appropriate to call it PT, or CT, or CPT: we do not yet have
a notion of charge conjugation or spatial orientation for posets. More on this in §3.5.
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earlier. To visualize these operations, look at the examples represented by the

Hasse diagrams in figure 2.1.3.

Finally, given two posets P and P' on the same underlying set one could
define their «intersection” by saying that p < gin PN P'iff p < g in both P
and P'. This operation, however, is only well-defined for labelled posets, since it
depends on how we identify elements of P with elements of P’, and not just on

the intrinsic poset structure. We are therefore not going to use it.

: 1
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Operations on posets figure 2.1.3

Dimension of posets

The notion of dimension of a poset will become important in the following.
A poset is not itself 2 topological space, but, as we will see in §2.7, there are ways
of making a topological space out of it. It turns out, however, that the dimension
one would define for this topological space is not very meaningful for the poset,
and we will instead define several other notions of dimension: the useful ones are
definitions in which the dimensién in some sense is not a property of the poset

only, but of the poset and some realization of it.

The first example is the notion mathematicians most commonly use, which

we will call “linear dimension”, ! dim(P) (to distinguish it from the other notions
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of dimension we will introduce later): it is the smallest n for which there exists
o linear realization of the poset in IR" as described above (the usual definition,
although equivalent to this one, looks quite different, and it will not be necessary
to give it here). This notion of dimension will be useful for us because of the
number of results already known about it, but T must point out that it has little
to do with the physically relevant dimension of a poset, which is the dimension of
the Jorentzian manifold which approximates well a large poset at large scales, in
o sense which we will define in §2.3. In particular, the latter need not be defined

for a given poset, whereas the linear dimension is always defined.

Let us give some known results on the linear dimension of a poset (see, e.g.,

Kelly and Trotter [62], Fishburn i61]). Upper bounds on Idim(P) are:
(a) width(P\E)+1, where E is any set of maximal or minimal points;
(b) |P|/2, ie., half the size of the poset, if |P} > 4;
(c) ldim(P\C) + 2, where C is any chain in P;
(d) max(2,|P\Al), where A is any antichain;
() width(P);
(f) 2-width(P\A) +1, where 4 is any antichain,
whereas a lower bound on the linear dimension of a poset is its breadth. Also,

deleting one point from a poset can decrease its linear dimension by at most one,

and the linear dimension of a cartesian product satisfies the relation

ldim(P x Q) < ldim(P) + ldim(Q), {2.1.6)

with equality, e.g., when P and Q are linearly ordered, or they each have unique

maximal and minimal elements.
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The first three hypercube posets figure 2.1.4

The linear dimension of many small posets has been studied, and in particular
there are two infinite families {Pny|n =1,2,.. .} of posets with ldim{P(,) = n:

Plny = Py (see example (d) above and figure 2.1.4), and

PEM = {{a}|a € 4}V {A\{a}|a € A}, (2.1.7)

where |A| = n, ordered by inclusion (Dushnik and Miller {60]). These latter

posets saturate the upper bounds (b) and (¢) and the lower bound on the linear

dimension; the first four of them are shown in figure 2.1.5.

i o T

The first four Dushmik-Miller posets

A second definition of dimension available in the literature ts that of “mul-
tiposet dimension™: mdim(FP) is the minimum size of 2 collection of posets on
the same underlying set as P, such that P itself belongs to the ccliection and

such that, given any two elements p,¢ in the underlying set of P, there exists

exactly one poset in the collection with respect o which p and ¢ are related (with
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either p < gor ¢ < p). At first this notion, like many others in combinatorics,
might seem fa.r-fetched, but it does capture some notion of complexity (see, e.g.,
Behren.dt [578]): T |

(a) mdim(P)=1 iff p is linearly ordered;

(b) mdim(P) =2 i ldim(P) = 2 (Dushnik and Miller [60});

—

¢} if P' is a subposet of P, then mdim(P') < mdim(P);

(d) for any P, mdim(P) < ldim(P);
(e)

for any n > 3, 3P : ldim(P)=n A mdim(P) = 3 (namely the Dushnik
and Miller posets (2.1.7}). |
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2.2 Metrics and causal structures on differentiable manifolds

The causal relations induced by lorentzian metrics on manifolds have been ex-
tensively studied, for the case of Minkowski space, starting just a few years after
Minkowski’s work (Robb [54]), and more recently have received an increased
attention mainly because of their applications to “global methods” in general
relativity, which use the behavior of families of geodesics to establish global topo-
logical and metric properties of space-times, in particular to prove theorems on
the occurrence ;r)f singularities. Here, I will be interested in the results obtained
regarding the amount of information that a causal structure by itself, abstracted
from the other structures used in defining it, carries about the latter.

We start by defining some standard terminology related to causal structures
(see, e.g., Kronheimer and Penrose {50]; Carter [43]; Hawking and Ellis [48]).
Suppose (M, gq3) is a space-time (i.e., a differentiable (paracompact, Hausdorff)
manifold with a smooth metric of lorentzian signature, (— 4 +---+)—of any
dimensionality}, which is time-orientable (i.e., such that a future and a past light
cone can be separately assigned in a continuous way to all points of M). Then
the causal past J~(z) of a point z € M is the set of all points in M which can
be reached by a smooth past-directed causal (i.e., timelike or null) curve from z.
The chronological past I™(z) of = is the set of points in M which can be reached
by a smooth, nondegenerate—we don’t allow ourselves to stay always at z in
this case—past-directed timelike curve. The causal future and the chronological
future are defined similarly. All these “functions” can be extended to subsets
S ¢ M by taking the union over the points in them, e.g., J=($) = Ugesd ™ (2).
Chronological pasts and futures are always open in the manifold topology of M,
whereas causal pasts and futures are not necessarily closed, but for most practical

purposes they can be thought of as closed.
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Space-times can be classified according to how “nice” their causal structure
is, i.e., to how far it is from allowing a future-directed causal (timelike or null)
curve to go back to its own past; mathematically a variety of causality conditions
can be imposed, of varying strength, to prevent this. Since we will quote results
which use them, let us give the definitions of some of the conditions one imposes.
A space-time is causal if it contains no closed everywhere future-directed (or
past-directed) curves. A space-time is strongly causal if for every point = in
it and every open neighborhood U of z, there is another open neighborhood
V ¢ U of z such that every future-directed smooth timelike curve which leaves
Y never comes back to it. A space-time is past and future distinguishing if, for
any two points z and v, I(zy=1"(y)=z=9 and similarly for It. The past
and future distinguishing condition is equivalent to the statement defining the
strong causality condition, but restricted to curves which pass through z, and is
thus slightly weaker, but both are intended not to allow timelike curves to be
.even “aimost closed”. Finally, a space-time is stably causal if its metric has a
neighborhood (in 2 suitably defined notion of topology in the space of lorentzian
metrics on M—see, e.g., Hawking and Ellis {48]} every metric of which is causal.
This is equivalent to the existence of a global time funciton t: M — R, with Vgt
everywhere timelike.

Suppose a space-time (M, gap) is causal and time-orientable. Then the above
notions define on M a partial order, as we have already mentioned, the causality
relation, 1 < yif £ € J~(y). Two other relations can be defined: the chronological
relation, ¢ < yifz €1 ~(y), and the horismos relation or null relation, z — ¥
if z € J (y)\I (v). These are not partial orders in the sense of §2.1 (e.g.,
<< is not reflexive), but, together with the causality relation, they satisfy other

properties which, abstractly applied to a set, define a causal space (Kronheimer
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and Penrose [50]). The expression «cqusal structure” refers collectively to these
three relations, although, since in reasonably well-behaved cases they can all be
defined in terms of any one of them, ] occasionally use it to denote just the partial

order <.

Flat space-times
It has long been known that the causal structure of 4-dimensional Minkow-
ski space contains all the information about its affine or linear (and therefore
topological and differentiable) structure, and about the metric, up to a global
scale factor. To show this, Robb [54] constructed these structures starting from
a causal one satisfying a set of conditions, expressed purely in causal terms,
which captured the fact that the causal structure had really been obtained from
Minkowski space to begin with. Work on this subject was later done by Re-
ichenbach [68], Mehlberg [52], Alexandrov [42], with similar results. The most
complete and concise formulation of the result was given however by Zeeman
[57}: the set of all one-to-one mappings f : M — M of 4-dimensional Minkowski
space such that z <y & flz) < fy) (such 2 map is called causal isomorphism)
coincides with the Poincaré group together with dilatations.
I will not prove here these results, but I will Just sketch a simple construction
to illustrate how the 4-dimensional Minkowski space structure is recovered up o a
global scale factor from the causal structure. Assume we have an infinite causal
set whose structure is known to be compatible with 4-dimensional Minkowski
space. Then the steps are the following:T
{(a) a null ray can be defined as a set of points £ such that for any pair of
points z,y € £ there is a unique causal path connecting them, i.e., a totally

ordered set of points of the form t={z|z,z€lnz<y<z=Y €t}

t This construction is due to R. Sorkin.
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a null 3-plane is defined as the set of points which are spacelike related (i.e.,
unrelated) to a null ray, together with the ray itself: P := {z|zhe} UL,
where the symbol i denotes the relation “spacelike related to”;

a spacelike 2-plane is the intersection of two null 3-planes: S := Py N Py

a spacelike line is the intersection of two spacelike 2-planes (which meet at
more than one point}: L := 5N Sq;

a timelike 2-plane is the union of all {spacelike or null) lines joining points
on two intersecting null lines;

a timelike line is the intersection of two timelike 2-planes (which meet at
more than one point, and not at a null or spacelike line};

a parallelogram is formed by two pairs of parallel lines (coplanar lines which
do not meet) intersecting at four points; |

to get the linear structure fix now any point as the origin, and call vectors
ali other points, or equivalently all line segments with one end at the ori-
gin: addition of two vectors is defined by the diagonal of the parallelogram
formed by these vectors; using the addition we can then easily define mul-
tiplication by a rational number, and from there multiplication by a real
number;

what will become an orthonormal basis is chosen as follows: choose an
arbitrary timelike vector T (here we actually make 2 choice for the global
conformal freedom, besides picking a preferred 3+1 splitting); choose then
any spacelike vector X such that both T + X and T — X are null (this
says that X is normal to T); choose a second spacelike vector Y, also
satisfying the condition that T_-Y and T+Y be null, and in éddition that
X + Y ++/27 also be null (read: ¥ perpendicular to X); finally, choose a

third spacelike vector Z, with T— 2, T+%, X +Z++v2T and Y+Z+v2T
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null vectors;

(5) now we can impose the “meaning” of the conditions in (i) as a definition of
the metric n: the four chosen vectors are linearly independent, and we set
n(T,T) = -1, n(X, X) =49(Y,Y) = n{Z,Z) = 1, and all the non-diagonal
terms equal to zero; the definition is then extended to all other pairs of
vectors by linearity.

It is very easy to extend the construction to any other dimensionality, except 2:
in 2 dimensions step (b} does not give anything (but the null rays themselves),
and we cannot proceed to step 3. The above construction, although simple to
follow, is misleading as far as the general metric case is concerned, since it uses
the vector space structure of Minkowski space to define the metric and it leaves

the role of the topology of the manifold at a very implicit level.

Curved space—tifnes

The above results might be a bit surprising, in view of the fact that an
arbitrary conformal transformation does not change the causal structure of a
space-time: it might seem that only an equivalence class of space-times, confor-
mally related to a given Minkowski space, could be recovered. The subtlety is
that in the reconstruction results one puts in the fact that the metric is flat, and
this Tules out all conformal transformations except the constant ones. For exam-
ple, in the sketch of construction I described above, we were looking for a linear
structure in the space, while in Zeeman’s theorem, the statement just refers to
maps from Minkowski space to Minkowski space—and not, e.g., from Minkowski

T

space to some other given conformally flat space-time.

+ It would clarify the issue considerably to spell out clearly what we mean by “reconstructing”
the metric from the causal structure. Mathematically, consiruction arguments are given in
functorial terms; in our case, we could thus formulate the questions we want to address in
terms of functors from an appropriate category of causal spaces to one of Minkowski spaces
or of conformally flat space-times.
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In the case of a more general space-time, the analogous thing to knowing that
the metric is flat is not a very natural requirement, if it can be at all worded.
Thus, the result one obtains looks a bit different: the knowledge of the causal
relations between all pairs of points allows us to determine uniquely a topology
and differentiable structure on the manifold, and the metric up to a (local) con-
formal factor, i.e., to determine the conformal metric gqs/(det g)l/ % where n is
the dimension of the manifold. The most general proof of this fact was given by
Malament [51], who showed the following: if (M, gqp) and (M',g;) are past and
future distinguishing space-times, and f: M — M acausal isormorphism, then f
's 3 homeomorphism, and it preserves future directed continuous timelike curves
and null geodesics. This, together with Hawking’s theorem (see [49]) that any
homeomorphism preserving future directed continuous null geodesics is a smooth
conformal isometry, proves the claim.

The remaining component of the metric can be recovered if one assigns a
volume element to the manifold, as we will see explicitly in §§2.5 and 2.7. The
construction for the metric in this case works for all dimensionalities, including

n =2,

Topologies for space-time

An interesting aspect of the relationship between causal structures and geom-
etry (“chronogeometry‘”) in the continuum is that of the topologies for a space-
time which can be defined in terms of its causal structure {the usual topology one
gives to space-time comes with its differentiable structure: thus, it is there before
any metric is put on it, and it cannot know anything about the causal structure).
These alternative topologies are defined instead once the causal structure is given.

The most famous such topology is the Alexandrov topology: the coarsest

topology in which all chronological pasts and futures I™(z}, I7(z) are open. A




9.2 Metrics and causal structures on differentiable manifolds 50

base for this topology consists of the Alexandrov neighborhoods: all open sets
can be generated by taking unions of these.T In general the Alexandrov topology
is coarser than the manifold topology, but the two are equivalent if the former is
Hausdorff, or, equivalently, if the space-time is strongly causal (Kronheimer and
Penrose [50]). (We remark here that if we applied this definition to a (discrete]
causal set, we would in general obtain just the discrete topology on it, which is
trivial}.

Another topology for Minkowski space, which can be called fine topology,
was defined by Zeeman [57b} as the finest one which induces on all straight
timelike lines and all spacelike hyperplanes the same topology as the manifold
topology. It is harder to work with than the Alexandrov topology or the manifold
topology, but it is strictly finer than these, and it can be useful as a way to
formulate questions about the causal structure in topological terms, since, €.g.,
the homeomorphisms in this topology coincide with the causal isomorphisms
together with causal duality. This topology was later generalized by Gobel [46]
to curved space-times.

But the most interesting one is the path topology of Hewking, King and Me-
Carthy [49]: the finest topology which induces on all continuous timelike curves
the same topology as the manifold topology. This definition may also not be too
simple to work with, but it is also stronger than the manifold one, and it has a very
interesting property: all homeomorphisms of the path topology, for any space-
time, are smooth conformal isometries (Malament [51]). Furthermore, it might be

considered as more physical than the Alexandrov topology (aithough, in the lat-

+ If one wishes to use the Alexandrov topology for more general space-times than the ones
covered by the definition I gave earlier, then the Alexandrov neighborhoods comstitute a
basis iff the following conditions are satisfied: (1) Vz € M,3y,ze M1y <z <3z and (1)
Yz,y1, Y2, 21,42 € Miy <z=<z,1=12 TuweM:iy <Koz KWKz, g =
1,2.
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ter, open sets are defined using the causal structure, Alexandrov neighborhoods
are still not very meaningful concepts operationally). A base for the path topol-
ogy of M is given by the sets of the form Ly (z, €) := Bu(z,e)n[I™ (£)uI~ (z)U{z}],
where By(z,¢) is the image under the exponential map of a ball of radius € in
the tangent space Tz M, small enough to fit in a conver normal neighborhood U
of ﬁ:, a neighborhood such that any two points in it can be joined by a unique

geodesic lying entirely within the neighborhood.

Comment

Let me conclude this brief review with a remark of a more philosophical
nature. The theorems quoted above, as we saw in connection with Robb’s work,
can hardly be said to actually reduce the space-time structure to that-of a causal
space, since they say: if we know that a causal space really comes from a space-
time manifold, then the latter is determined up to a local scale factor. For flat
space-time, where explicit conditions have been given on the causal structure
to express this assumption, one could say (Torretti {71]) that we have “a set
of geometric conditions with which the basic forms of physical causality must
comply, if the principles of special relativity hold good”. But in the general case
we do not even have this: we don’t know how to express the requirement that
the causal space come from a manifold in terms of the causal space itself (some
work related to this question was done, e.g., by Ehlers, Pirani and Schild [44]
and by Woodhouse [56]). And, in neither case do we have a dynamical theory

for the causal space.
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2.3 Causal sets approximated by differentiable manifolds. I

We now start to consider to what extent the results of the previous section
apply when the causal relations are defined for a discrete set of elements, i.e., to
what extent a causal set determines the properties of an associated space-time
manifold. From the concluding remark of §2.2, it would clearly be desirable to
give a constructive procedure for obtaining such a manifold, if one exists, from the
causal set. Only the outline of a procedure for doing so is available, however, and
we will have to make a choice for what we mean by manifold “associated” with a
causal set, and tackle the problem of showing, for such a choice, how unique the
space-time manifold is. A very reasonable guess as to the kind of relationship
there will ultimately be between the causal sét P and the space-time manifold
{M,ga) is that the general situation can be described by a mapping f : P — M.
It has been said that we are putting in by hand an interpretation of the abstract
elements of P as poinis, but there are a few arguments in favor of our choice.
First and least, any other concrete possibility proposed (points — strings, etc.)
seemed more artificial. Second, the mentioned outline for a manifold construction
procedure suggests the identification, since, in it, the causal set elements end up
being vertices of a simplicial complex, which go over to points in a manifold
of which the complex is a triangulation. Third, we expect to obtain only an
approximate metric for the manifold, and part of the freedom left will be that
of performing a small diffeomorphism, which, in one view, can be thought of as
moving the embedded points around a little, thus making them look more like
blurred points. Finally, if we invoke the “magic wand of quantum theory”, we
can claim that in the end the complete theory, including quantum dynamics, will
turn out to be equivalent to a formulation which does not use mappings of causal

‘set elements to space-time points.
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We will say that f is a causal embedding if it is a causal set isomorphism onto

the image of P, i.e., if f(P) is a causal realization of P:
(1) f(p) €J™(f(q)) iffp < 4.

Notice that the existence of a causal embedding requires that (M, g,3) be causal
and time-orientable, or that any closed causal curves it might have be small
enough not to be “seen” by the embedded points (non-time-orientability, on the
contrary, logically cannot be confined to a small region of space-time). We will
say that f is a faithful embedding with density p if, in addition, it satisfies:

(2) the embedded points f(P) are distributed with uniform density p; and
(3) the characteristic length, A, over which the continuous geometry varies
appreciably is everywhere much greater than the mean spacing between

embedded points.

Let us try to clarify the meaning of these conditions.

- Density

When we say that the embedded points are distributed uniformly we mean
that their density has a constant value, p, according to the metric g, in the
following sense. If we take an arbitrary Alexandrov neighborhood of size V in
M the expected number of embedded points in it is pV, while the probability
distribution for having N points in the neighborhood is a Poisson distribution,

(pv)Ne-—pV

P(N) = N

(2.3.1)

Since defining density in a lorentzian manifold is not as trivial as in a euclidean

one, let me comment on this definition.

In euclidean geometry, we define density at a point by measuring the quantity

of interest (in our case counting embedded points) inside invariantly defined
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regions of known size, centered around the point in consideration, for sufficiently
small regions, i.e., smaller than the scale over which the resulting density varies
appreciably, but, in the case of a grainy structure like ours, large enough to
contain many points. In a lorentzian manifold, the most natural substitutes
for the spheres one uses in the euclidean case are Alexandrov neighborhoods,
and, even when we consider Alexandrov neighborhoods of small size, these can
extend between “far apart” regions in the manifold, if these are “approximately
null-related” (the quotes stand for the fact that these expressions are actually
meaningless: no timelike direction is “more null” than any other). Thus, if we
wanted to produce a distribution of points with “non-uniform” density, in an
invariant sense, we would at least have to make it uniform, for every p€ M, ina
thin neighborhood of its light cone. But because the light cones of all points in
M meet (this might not actually be true, but the argument can be made more

precise), we are forced in the end to have a uniform density everywhere.

The reason for this situation can be traced to the following two related facts.
First, euclidean spheres are invariant under the local symmetry group of euclidean
space, the rotation group SO(n), so, to define p,, one only needs o consider a
1-parameter family of regions around p, parametrized by size, while Alexandrov
neighborhoods are not Lorentz invariant, so one needs to consider many more
regions around p to define p; (similar remarks can be extended to the curved
space-time case). | Second, we have not specified what we mean by “slowly vary-
ing” lorentzian density; the slowness of the variation has to be measured in terms
of the metric distance along the curve one chooses to follow, but if we want it to
vary slowly along all directions, arbitrarily close to null ones, we end up with the

problem we had before: the density cannot vary at all.

The last remark above, however, suggests one way out of the difficulty in
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defining non-uniform densities in lorentzian manifolds, at the cost of losing full
general covariance. Choose a timelike vector field ¢ in M. Then we can de-
fine density with respect to t* by using only Alexandrov neighborhoods whose
endpoints are on the same integral curve of it. If, for a given t%, suitable Alexan-
drov neighborhoods can be found (i.e., the density is statistically meaningful
and slowly varying), then this density will coincide with the euclidean one we
would have obtained from the riemannian metric hy = gg5 + 2¢4s, where
te 1= to/(t™t;m) 2. In a given situation, there will be a range of timelike di-
rections which can be used to define the density, and the latter can turn out to

be non-uniform, while other directions will not give well-defined results.

The fact that the lorentzian density p; coincides with the euclidean one Pe
for two metrics related as above, is indicated by the following fact. Consider
n-dimensional Minkowski space, with the metric expressed in the usual cartesian
coordinates, i.e., 7, = diag(—1,+1,---,+1), and use the same coordinates to
construct a euclidean metric ey, 1= n,, + 2t,t, = diag(+1,+1,-- +,+1). Then

the volume elements of these two metrics in these coordinates are the sarme:

dVy :=/—nd'z = dV, := Ved"z = d"z, (2.3.2)

the euclidean and lorentzian values for the volume of any space-time region coin-
cide, and a uniform density according to one metric is uniform according to the
other as well, at least for the range of timelike vector fields for which pr is well-
defined. There is a (surprising) example of a distribution of points in Minkowski
space which has a uniform p,, but an obvious limit to the range of vector fields
one can use to define p;: the 2-dimensional diamond lattice described in appendix

1, one of the most regular distributions of points one can think of.
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Let us now go back to the main point. Most of the above considerations,
although interesting, can be bypassed in our case, where we are only interested
in defining uniform demnsity. The notion we defined by (2.3.1) is a “global” one,
as opposed to that of density at single points, and more complete than the latter,
in that it takes care of what happens in all Alexandrov neighborhoods, instead of
requiring us to define which ones have the right size. It seems reasonable to think
of (2.3.1), in particular, as imposing that any vector field can be used as possible
direction for the pointwise density, because of the Lorentz invariant nature of the
definition. Thus, according to {2.3.1), the diamond lattice of §A.1 does not have
a uniform density, since too many Alexandrov neighborhoods, close to the null

lines, are empty: the lattice is not random enough.

As for the reason why we did not set the constant density to be 1£5", or
some other fixed po = 1 (natural unit) in condition (2}, we will see later that the
causal set we map intoc M may not be the one we consider as the fundamental

one, which defines the natural volume, but a coarse-grained version thereof.

Characteristic lengths

Charactéristic lengths over which the continuum geometry varies appreciably
might arise as the following: topological-metrical scales, like the length of a closed
spacelike geodesic or of one of the small closed causal curves allowed by condition
(1), or, more generally, lengths associated with nontrivi_al generators of any ho-
motopy group of the manifold; purely metrical scales, like R™Y/2, (Rq R®)~1/%,

.., and, in particular, length scales defined by geodesic focussing. In other
words, the loosely stated condition (3) implies in particular that every point of
M should have an open convex normal neighborhood of size much greater than

the spacing {e.g., if we call y%,%?,...y{""1) the coordinates, the normal neigh-
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borhood should contain a euclidean-type ball (¥°)? + (¥')* +...+ (y("_l))2 = r?,
with r > 1 in natural units). How much of the desired content of condition (3)
escapes from such a way of stating it is not clear. Intuitively, the existence of
these neighborhoods should exclude positive curvature, which makes geodesics
converge, but even in a negative curvature space like anti-de Sitter space, time-
like geodesics reconverge on a scale set by the cosmological constant, i.e., by the

curvature itself, and thus such a metric would be excluded.

In any case, we could try to capture more of the meaning of condition {3) by
requiring that each point have a suitable neighborhood, which is approximately
flat. More precisely, each point would be required to have a neighborhood con-
taining a Riemann normal coordinate ball of radius much greater than the spac-
ing, as above, such that in these coordinates the components of the metric are

close to ny, = diag{—1,+1,:-, +1), and its derivatives are close to zero.

Approximate isometry

The discussion above introduces the more general question of how to com-
pare two metrics, to decide whether they are close to each other. In order to
compare two metrics gq5 and g, on two manifolds M and M, we will first require
that the manifolds be diffeornorphic. This in effect reduces the question to that
of determining when two metrics g1yap and g(z)zp ON @ manifold M are approx-
imately equal: (M,gq) and (M',g.;) are approximately isometric if there exists
a diffeomorphism % : M — M’ such that gg; and the pullback ¢gl, of gl by ¢

are approximately equal.

To establish whether g(;)as and g(zyep are close to each other, we might be
tempted to compare their values pointwise. But there is no way to give a good

local definition of closeness for two lorentzian metrics: we obviously don’t want
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to compare components in some coordinate system, and any invariant “distance”
we might define, like [(g(l)ab - Q(z)a(,)(g&b) - gt’;’))]l/z, cannot capture the notion of
distance we want to define, since, e.g., it does not distinguish between the metrics
Gap and ggp + vgty, When u, is a null covector with respect to g,. One way out
is to introduce a reference positive-definite metric £y, on M (this can always be
done}, and consider h“mhb"(g(l)ab ~ 9(2)as)(9(1)mn — 9(2)mn) like a distance, which
is effectively what has been done (Hawking [47], Geroch [45]) to define a topology
on the space of all lorentzian metrics on M (various topologies on this space can

be obtained even without introducing an auxiliary metric, like the one I alluded

to in §2.2, used to define stable causality).

We could give a non-invariant definition of the type given above for approxi-
mate flatness, and argue that it might be meaningful, but I will describe instead
a “global” approach to the definition of closeness of two lorentzian metrics, in the
sense of “global” that I used when discussing density. Such a definition comes
again from thinking of the metrics as given by a volume element and a causal
structure: we will say that two metrics are close t0 each other if their volume
elements approximately agree, det g(1) = detg(g), and also their light cones, in
the following sense. Consider two points, £ < vy, iIn M. The two metrics will
assign different Alexandrov neighborhoods to them, A;(z,y) and Aa(z,y). The

symmetric difference
AA(:E,y) = A1 N4 = (Al\Az) U (Az\Al) (2.3.3)

contains some information on how much the two causal structures disagree, at

the scale set by the proper time between z and y. Thus, a quantity like

3 VI[AA(z, )}
8190 9)) = 292 T4 2 ) U dgle)

(2.3.4)
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could capture the difference between the two metrics, provided we make it into
a well-defined quantity, by specifying which metric measures the volumes, and
arrange for it to satisfy “transitivity of the relation =7, le., g(1)ap = g(2)ar =
9(3)ab = 9(1)ab ~ 9(3)ab- This would be guaranteed, e.g., if 6 satisfied the triangle

inequality, at least for metrics sufficiently close to each other.

Our main conjecture

We will require conditions (1), (2} and (3) to be satisfied for a manifold to
be a reasonable continuum approximation to a causal set, Why we would want
to impose the first two conditions should be clear. The feason for imposing
(3) is not just that small lengths would not be meaningful, but also that (1)
and (2} by themselves would be far from determining a unique approximating
(M, gep): given any. manifold with the right causal structure, i.e., satisfying (1},
we could always arrange the density to have a constant value by setting the
conformal factor appropriately; but in doing so, we would in general introduce
an unreasonably large curvature, or other small characteristic lengths. (It seems
possible, however, that conditions (1) and (2) alone determine the continuum
geometry “up to arbitrary variations on small scales and small variations on
arbitrary scales”, where small scale means spacing between embedded points or

smaller.)

But, taken together, these conditions are very strong: in general, for a given
causal set P, there will be no manifold M in which P can be faithfully embedded;
in fact we expect almost all causal sets not to be faithfully embeddable anywhere.
Even after imposing dynamics, there is no compelling reason to believe that the
dynamically preferred causal sets will be faithfully embeddable. We will come

back to this question, and to our proposal for obtaining nevertheless well-defined
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continuum approximations, in §2.8: here, as I remarked earlier, we are interested

instead in the uniqueness of such a continaum approximation, when it exists.

The question we posed at the beginning of this section then becomes: for
a given causal set P, how unique are the topology, differentiable structure and
metric of the manifold (M, gap), if we require that there exist a faithful embedding
f: P — M? Our main conjecture (Hauptvermutung) is that the topology and
differentiable structure are unique, and the metric is determined up to “small
variations”, i.e., if there exist two such faithful embeddings, the two manifolds

are approximately isometric.

In support of our expectation that a causal set has a structure rich enough to
imply all the geometrical properties we attribute to continuous space-time, I will
- (almost) show that the dimensionality of this manifold is unique, and sketch the
way in which one could prove that the topology and metric are also unique. The
argument will rest on the fact that dimensional information is really contained in
small subsets of the causal set, each of which, in the faithful embedding, covers an
approximately flat region, while the information about topology and curvature is
contained in the way these subsets are “put together”. We will thus take a long
detour to study first properties of embeddings of causal sets in Minkowski space,
in particular of small causal sets, and then other questions related to causal set

kinematics, and come back to the general problem at the end of this chapter.
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2.4 Causal sets embedded in Minkowski space

The question I want to consider in this section is: if we are given a causal set, how
do we know in which, if any, Minkowski space it can be causally embedded (no
uniform density requirement)? In particular, what is the minimal dimensionality
of the latter? This minimal dimension will be called the causal dimension of the
causal set. As I mentioned in the previous section, the results will in general
be applied not to whole causal sets, but to small subsets of these which can be
thought of as embedded in Minkowski space, since, because of their size, they
do not see the curvature, and, because they are subsets of a larger causal set,
they do not need to be uniformly embedded themselves. Suitable such subsetis
will contain the information on the physical dimension of the causal set, a;nd part
of what we want to know is which are those subsets and how do they contain
dimensionality information.

On which features of the causal set does the causal dimension depend? It
obviously depends on its size, but it also depends in a highly nontrivial way on
the causal relations. It seems clear that, the larger the number of points, the
higher the causal dimension one can force by using a suitable causal order. We
will see below how to give an upper bound on the causal dimension for a fixed
number of points, as well as which causal orders are more “efficient” for obtaining

a large causal dimension, but let us first look at a few trivial examples:
(a) For any N, the totally ordered set on /N elements, P}v—, can be embedded

in 1-dimensional Minkowski space;

(b) Forany NV, the “fence” causal set P; n on 2N elements has causal dimension
2, while the “crown” causal set Pyy has causal dimension 3; notice that

removal of any single link transforms Pj,; into P{ N

(¢) For any N, the “brush” causal set P := {a;;1 =1,...,Nja; < an;1 =

1,...,N — 1} has causal dimension 2;
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(d) Any causal set P has the same causal dimension as its dual P*.

The first remark we can make then is that just linking many points together
will not necessarily increase the causal dimension. Rather, the causal dimension
arises as a “nonlocal” combined effect from the whole structure of the causal set,

as example (b) suggests, and it measures some aspect of its complexity.

An upper bound on causal dimension

Before I give an upper bound on the causal dimension of a causal set, I will
state three lemmas. The first one proviaes an alternative characterization of
causal sets embedded in Minkowski space, which can be useful in a more general
context than the proof of the theorem below. Either the second or the thir& can be
used in the proof of the theorem on the upper bound (and they really incorporate
all the difficulty of this proof) but both are given, because of their relevance to
other sections below, and because neither of them has been proven, although the
sketches of proofs I will give make us believe that they are true. Lemma 3, in
particular, establishes a relationship between the causal dimension of a causal set,
and the linear dimension we saw in §2.1. As a warmup for this relationship, I will
give two (trivial) results: for any causal set P, ldim(P)=1 4 cdim(P)}=1 (the
causal order on 1-dimensional Minkowski space coincides with the coordinate
partial order on R'), and ldim(P) =2 & cdim(P} = 2 (the causal order on
2-dimensional Minkowski space coincides with the coordinate partial order in
IR?, since one can take these coordinates to be the null ones, v = z% 4+ ! and

v =z%—z!).

Lemma 1. If a realization of a finite causal set P is found in terms of balls in
Fuclidean space (a special case of the realization with open sets in a topological

T

space, described in §2.1), another realization in terms of points embedded in
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Minkowski space can immediately be constructed, and viceversa.

Proof. The proof is really very simple. Suppose first we have the realization
with balls in n-dimensional Fuclidean space. Then we can embed this Euclidean
space in (n + 1)-dimensional Minkowski space, as, say, the { = 0 hfpersurface,
and draw a set of past light cones such that the intersection of their interiors with
the t = O hypersurface coincides with the given balls. For each ball there is a
unique such light cone, and it is easy to see that the vertices of these light cones
provide a realization of the same causal set. Suppose, viceversa, that we are
given a set of points in Minkowski space which realize a poset P. Then construct
the past light cones of these points and consider their intersection with a flat
hypersurface to the past of all the points. This defines 2 ball for each light cone,

and the collection of these balls is the desired realization of the causal set. .

One potentially ‘useful consequence of this lemma is that, since it reduces
causal relations in Minkowski space 1o inclusion relations among balls in Eu-
clidean space, we can avail ourselves of the known results on the number of
regions that such a space can be divided into, when trying to establish whether
a given embedding is possible. For example, the maximum number of regions
R" can be divided into by & n-balls is (’:1) +57 0 (f) (see, e.g., Comtet i597).
There is cne thing to be careful with, however, when using such results. The fact
that in a given causal set some clements form an antichain does not mean that,
in a causal embedding in Minkowski space, they will lie on the same spacelike
hyperplane. Rather, there will exist hyperplanes on which some appear as points,

while the light cones of the others intersect the hyperplanes in spheres, with no

inclusion relations between them, nor with the points.

Conjectural lemma 2. Adding one maximal or minimal point to a causal

set can increase its causal dimension at most by 1.
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Sketch of proof. Suppose a causal set Py_y of size N — 1 has causal dimension
n. Then, by lemma 1, it can be realized as a collection of N — 1 {n—1)-balls
B:.‘—I in (n—1)-dimensional Fuclidean space E*~!. Embed this space in E" as,
say, the z" =0 hypersurface. Suppose we want to add a minimal element z,
to the causal set, with p, < pi, for some subcollection of elements {pi I3k =
1,...,M < N —1}. Then we want to show that from the B:-’“_l we can construct
n-balls B? such that the inclusion relations among them are preserved, and that
we can find an additional n-ball B} with By C B} for all 7, but not contained

in the others. It seems reasonable to expect that one can do so.

An illustration of what I mean by this construction can be found in figure
2.4.1. We start with a 5-element causal set of causal dimension 2. A causal
embedding in 2-dimensional Minkowski space yields the 1-balls shown, as inter-
sections of the past light cones of the embedded points with a spacelike line.
After promoting these 1-balls to a set of 2-balls in a plane, with the same in-
clusion relations, an additional 2-ball can be added, to yield a realization of the

B-element crown, which, by example (b} above, has causal dimension 3.

Adding 2 minimal element figure 2.4.1

Conjectural lemma 3. Givena linear realization of a causal set in R", one

can obtain a causal one in (n + 1)-dimensional Minkowski space.




2.4 Causal sets embedded in Minkowskt space 65

Sketch of proof. The idea is the following. A linear realization of a causal set
can be thought of one in a space-time with “square {or maybé better triangular)
light cones”. It seems not possible to obtain a map from IR" to n-dimensional
Minkowski space which takes all “square” light cones into round ones, but it may
be possible to produce one into a suitable region of (n + 1)-dimensional Minkow-
ski space, We start by mapping IR" linearly onto itself, squeezing all “square”
light cones into thin wedges. This can be done by a map which takes the ¢-th
standard basis vector e; into e; + « Z;Ll e; (normalization is not important), for
some o > 0, extended to all vectors by linearity. Now compose this map with
one that takes IR® onto one of the subspaces of the tangent space of the origin
in (n + 1)-dimensional Minkowski space which are tangent to its light cone, with
the axis of the “square” light cone of 0 € IR™ mapped to the line along which
they are tangent. The original points of the linear realization in R"™ are now all
spacelike related to each other, but “almost null-related”. The final step is to
project them to each other’s light cones, to obtain the correct relations. To do
this, start from the minimal points, and project them (say, along radial directions
on each t = const hyperplanes) on the light cone of the origin; then proceed by
projecting the points in the second layer onto the intersection of the light cones
of the first layer points they are linked to, and so on. If o is large enough, l.e.,
the “square” light cones squeezed down enough, this projection should displace
the points by an “arbitrarily small” amount, which should ensure that only the
desired relations between them are established in the process, unless somehow

the “errors” accumulate.

I will proceed to the “theorem” on the upper bound for the causal dimension,
as if either of these lemmas had been proved. From now on all results whose proof

depends on the validity of the lemmas will be indicated by the symbol *.
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x Theorem 1. A causal set of size N can always be embedded in (N — 1)-
dimensional Minkowski space (and has thus causal dimension < N).

Proof. It is very simple to prove the theorem by induction. The (only) 2-element
causal set sz obviously can be embedded in 1-dimensional Minkowski space.
Thus, for N = 2, the claim is true. Now, any causal set Py of size N can be
thought of as constructed from a causal set Py_; of size N — 1 by adding a
maximal (or minimal) point. But, if lemma 2 holds, we know that by adding
such a point the causal dimension can increase at most by 1. Therefore, if the
statement of the theorem is true for Py_.j, it is also true for Py. If lemma 3
holds, then the bound can be tightened: since idirn(P) < |P}/2 (§2.1}, cdim(P) <
|P{/2 + 1; other bounds can be obtained using the other known inequalities for

ldim(P). : .

~»8mall causal sets and dimension

We now want to study the question of what is the minimal structure a causal
set must have in order to tell us something about the manifold. Let us call n-
irreducible a causal set whose causal dimension is n, and decreases upon removal
of any point in the causal set (presumably by one). Then we will call a pizie for

n dimensions a “minimal” n-irreducible causal set, i.e., one with the minimum

size. !

We do not know yet whether n-pixies exist for all n (because we don’t
know that for all n, causal sets with cdim(P) = n exist}, nor if they are unique,

but we can say something about their size (indicate an n-pixie by 7):

+ Lemma 4. The size of an n-pixie is at least n+ 1, and n > m = || > [Pal.

Proof. The first part follows immediately from theorem 1. The second part from

t 1t will be useful to assume, at a later point, that pixies can always be embedded so that
no two points in them are null-related. We will assume here that this is always possible—if
in a particular embedding, two points end up nuli-related, move one of them slightly inside
the light cone of the other—but it will have to be checked once pixies are known. '
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lemma 2: suppose |Pu| < |Pml; if we remove any maximal or minimal element of
P, we get a causal set of causal dimension n — 1; if we keep removing elements,
at some point we will have a causal set of causal dimension m and size less than

[Pal < |Pr|. But then P,, cannot be an m-pixie, contrary to our assumption. e

Notice that the same result holds for linear dimension, since it just depends
on lemma 2, which for linear dimension is known {not just conjectured) to be

frue.

Let us look explicitly at the lowest dimensional cases (figure 2.4.2). In di-
mension 1 there is only one pixie, P = {a,b|a < b}; in two dimensions, two
3-element pixies, Py’ and P) (duals of each other); aﬁd in three dimensions;
three 6-element pixies (one self-dual, P(%M , and the other two taken into each
other under duality), as one can see by trial and error. But in fact one can also
use the knowledge available for pixies in the linear dimension'sense (see, e.g.,

Kelly and Trotter [62]) and show that

Lemma 5. The 3-dimensional causal pixies coincide with the 3-dimensional
linear pixies (i.e., the three 6-element pixies in figure 2.4.2).
Proof. First of all, any P has 6 elements: if it had less than 6, it would have
linear dimension, and thus causal dimension, less than 3; but all three 6-element
linear pixies are by inspection irreducible in the causal sense, and they must be
pixies. Consider now any causal 3-pixie P3. It cannot have linear dimension 2,
since then its causal dimension would also be 2; it cannot have linear dimension
greater than 3, because of lemma 4. Thus it must have linear dimension 3, and,

since it has 6 elements, it must be a pixie. .

It is simple to convince oneself that the three 6-elements causal sets in figure

2.4.2 are really pixies, by removing any one element and verifying explicitly that




2.4 Causal sets embedded in M:'nkowskf space ©O8

w O
it
=
1A
o
e
[§%] (
I\
‘/‘
\.
L»*U>
It

m=141:

Pixies for i, 2, and 3 dimensions figure 2.4.2

the resulting 5-element causal set can be embedded in 2-dimensional Minkowski
space (it may be useful to look at figure 2.1.1, where all 5-element causal sets are
shown). Also, I.shouid remark that a result like lemma 5 cannot be shown if one

replaces “pixies” by «3_dimensional irreducible causal sets”.

Finding pixies for higher dimensions becomes gquickly difficult, but some facts
can already be inferred, like the fact that n-pixies, if they exist, are not unigue,
and, if 7, is one, then sois 7. Theoretically, it would be very helpful if we had
2 lower bound on the causa! dimensiorn of 2 causal set. Since this'is not aveailable,
we can iry to guess what pixies might look like. A computer program, described
in appendix 2, has been writien to help in this task, by telling us whether a given
causal set P can be {causally) embedded in 2 given dimension n. However, this
program (interesting as it is by itself) will by no means solve our pixie problem:

it can show that P can be embedded in n dimensions, but it can never guarantee

that it can’t be embedded.

Almost as useful as knowing & family of pixies for all dimensions, would be
to know some family of causal sets containing (at least) one causal set for each

dimension, just like we had in the case of linear dimension (see equation {2.1.3)).
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One possible such family is the “hypercube” causal sets Pgn (figure 2.1.4). This

has the property that

Lemma 6. Any {connected) causal set P of size N can be embedded as a
sub-causal set in Pyn—..
Pr'oovf.Jr (This proof has nothing to do with causal realizations: it is just com-
binatorics.) From the definition of Pyn, we see that it can be considered as the
set of all strings of N bits (e.g., (01101...1001)), where p < ¢ iff the string ¢
contains at least all the 1’s present in the string p. The proof will now proceed by
induction. The 2-element causal set {(0), (1)} s P21, 50 2 fortiori it is contained
in it. Suppose now that P, of size N, is embeddable in Pyn-1, and consider a
causal set @, of size N + 1, obtained by adding a minimal element py_, to P
(without loss of generality, as remarked iﬁ the proof of theorem 1). Then P is a
subset of all possible {N — 1)-strings of bits. Construct a collection of N-strings
of bits as follows. To each string/element.p; € P, append one bit which is 1 if
p; is to the future of py_ 4, and O otherwise; finally add an extra N-string to
the collection, given by (00...01). It is simple to check that this collection of

N-strings realizes @, and it is by construction embedded in Pyn. .

Another possible family in which to look for causal sets of all dimensions is
the collection of causal sets P(i) defined by the following construction. Take an
(n—1)-simplex and join its barycenter to its n vertices, and the barycenters of
all its 1-, 2-,..., (n — 2)-faces to the vertices of the corresponding faces. Finally,
add n external points and join one of them to each vertex. Then the causal set
is represented by all these n + 2" — 1 points (vertices, barycenters and external

points), with the above links defining the order relation, each vertex following

+ Proof provided by D. Meyer.
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{or preceding, if desired) all points it is joined to.

One can easily see that P(?) = PJ, P(% > Py, and P(‘g) ») Pg)M, and they

are embeddable, respectively, in 1, 2, and 3 dimensions. However, P(?) is also
embeddable in 3 dimensions, as can be shown by producing the corresponding
2-ball diagfa.m (not reproduced here because it is not trivial, and looks a bit
messy—especially in black and white). Since Ialt'm(P(f‘)) > 4, because P(f) D
P(%M, this fact shows that linear dimension does not always coincide with causal

dimension, and cannot be used as a physical definition of dimension of a causal

set.

The first three P(i}'s figure 2.4.3

Other aspects of causal dimension

I conclude with a simple resuli on the behavior of causal dimension under

the operations defined for causal sets:

-

Lemma 7. For finite causal sets P and @, under the operations of disjoint

(cardinel) and ordinal sum,

edim(P + Q) = cdim(P & Q) = max [edim{P), cdim(Q)}]. (2.4,

3]
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Proof. The proof is obvious: suppose cdim(P) = m, ¢dim(Q) = n; then there
exist separate causal embeddings f : P — Ruex(mn) and g 2 Q — REX(mN),
with all embedded points contained in compact subsets of R™**(™")  respectively
C D f(P) and D D ¢g(Q); but then an embedding of P + @ is obtained by
embedding P and @ simultaneously, with all points f({P) spacelike related to

¢(Q), and one of P & Q with all of f(P) to the past of g(Q). .

Less trivial, and much more immediately useful, would be to show a similar
result to lemma 7, but for the cartesian product, analogous to the known result
for linear dimension. Even showing that edim{P x P}) < cdim(P) + 1 for all P
would be extremely useful, since it would immediately imply that Py = (Pé)”’
has causal dimension at most n. From the fact that a cé,usal set P of size NN is
embeddable in Pywv -1, as we saw, it would then follow that P has causal dimension
at most N — 1, i.e., the result of theorem 1, without having to prove lemmas 2

or 3.
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2.5 Causal sets sprinkled in Minkowski space

In this section we will mainly address the following question: if we start with
Minkowski space, and sprinkle points in it randomly (i.e., with uniform density),
what properties do we expect the resulting causal set to have? In particular,
the properties we will be interested in are of a “statistical” nature: how many
relations will there be, on the average, between all points in a given space-time
volume? About how many links will each point have? How many paths will there
be between any two of them?

The motivation for considering this kind of question is twofold. On the one
hand, we will use these results in the next section to define notions of dimension-
ality for general causal sets, based on the dependence of these “statistical” or
“global” quantities on dimension found here. These notions will be meaningful
when looking at properties of large collections of elements, e.g., those belonging
to some large Alexandrov set, as opposed to looking for specific causal relations
among few elements, like searching for pixies. On the other hand, as we will see

in §2.7, the results given here will form the basis for a study of what happens to

various properties of causal sets when the embedding manifold is curved.

Consider thus n-dimensional Minkowski space, with a fixed uniform random
sprinkling of points in it. This, as we saw, means that an Alexandrov neighbor-
hood of size V will contain on the average pV points, with a Poisson probability
distribution of its containing some number N of points, and that a lorentzian
random sprinkling of points looks exactly the same as a euclidean random sprin-
kling. This is very useful, since it means we can carry over some of the techniques
developed in euclidean space for the treatment of random or poissonian lattices

(Santalo [83]; Itzykson {76]; Lee {79]}.
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But in a very important respect lorentzian random sprinklings are different
from euclidean ones. Looking at an example of such a sprinkling, for n = 2, shown
in figure 2.5.1, we can notice the high number of links per point, in particular
along “almost null directions”, which makes this diagram look quite different
from a euclidean 2-dimensional random lattice, where each point has 6 links on
the average (no matter how large the lattice is}, or from, say, figure 2.1.2, more
closely corresponding to one’s naive expectations. In fact, it is easy to see that
Lorentz invariance of a random sprinkling implies that, if the figure showed an

infinite region, each point would have an infinite number of links.

“ “ P
/0 \\‘&'/ } 4

A causal set sprinkled in n=2 figure 2.5.1

To find out how fast this number grows with volume, we can pick an Alexan-

drov neighborhood A(z,y) in M {with = an embedded point), and calculate the
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expected number of links z will have with other points in A, by writing the
expected number of links with a manifold point z' contained in a volume el-
ement dV' of A, and integrating with respect to the latter over A. We start
with the following observation. Since for an Alexandrov neighborhood of vol-
ume V, the probability that there will be exactly N embedded points inside it is
(pV)Ne=#Y/N! (equation 2.3.1}, in particular, the probability of having no points
is e=?V and that of having exactly one point in an infinitesimal volume element

dV is just pdV. Thus, the probability of having a link between z and z' is
P(dz<dz') = e~ VAL (g < 2) pdV', (2.5.1)

But this is also the expected number of such links: for z and =/ fixed, let us call

x(z,z') the variable whose value is 1 if there is a link between these points, and

0 otherwise. Then its expectation value is
(x(z,z")) =0-P(x=0)+1-P(x=1} = P(x=1). (2.5.2)

But P(x=1) is just (2.5.1), and therefore the expected total number of links z

has is

(Ni(=)) = /J ey (2.5.3)

The result is that (N;) grows logarithmically with volume in 2 dimensions, linearly
in 3, and so on.

Although, for definiteness, one can read the formulae in this section setting
p = 1 (in natural or Planck units), we will leave p {uniform but) arbitrary in
them. By doing this, we obtain, at very little cost, an increased “dimensional
readability” of the formulae, and a greater generality we might want to make use

of, in cases where we have to “coarse-grain” the causal set (see §2.8).
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Expected number of paths

Let us now see how to calculate the expected number of paths between two
timelike related points z and y, £ < y, a distance { apart in n-dimensional
Minkowski space (see also §3.4). By a similar argument to the one that led to
(2.5.1) and (2.5.3), we obtain that the probability of having a k-link path between
two embedded points r and y, with intermediate points z;,z3,...,T5—; (in this

order), contained respectively in the small regions dV1,dV3,...,dV}_; is

Plz<dzy < ... <dzg_1<y)

=¥ Vi dVy ... dVi_v(z — T)v(zy — 3a) .. Tkl —v),  (2.5.4)

where we have defined v(z — z') = e~?V{22)(z < £'), and the expected total
number of k-paths from z to y is just (2.5.4), summed over all locations of the

k — 1 intermediate points:

(Ny) = pF1 fd$1 fd.’ﬂg - /d:r:k_l v(z — zy)v{z1 — z2) .. v{Zk-1 — ¥), (2.5:5)

where all integrals extend over A{z,y). Using (Ng), we can write down expres-
sions for other quantities of interest, like the expected total number of paths

between z and y,

(Np(z,v)) = D _(Ne(z,v)), (2.5.6)

k=1

or the average number of links (length) of one such path,

1 oo

(Ni(z,y)) = AT ; k{Ni(z,v)}), (2.5.7)

which can all in principle be calculated, giving an n-dependent relationship be-

tween V(z,y) and {Ny), (Np) or (V).
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In practice, these calculations are not simple, but I will briefly describe a way
1

to get, e.g., the asymptotic value for {Np) in 2 dimensions, as V(z,y) — oo.

We start by noticing that (2.5.5) is in the form of a convolution,

(Ni(z,y)) = (v k- x v)(z,v) = v¥(z,v) (2.5.8)

(from now on, for simplicity of notation, we will set p = 1), from which it follows

that

Wyless)) = Sort(ens) = (125 -1) (@), (25.9)

in a sense I will now specify.

Let us use the null coordinates u = 2+l 0o =2"— z!, and choose the
Alexandrov neighborhood defined by u € [0,{], v € {0,!] (there is no loss of
generality, since the result has to be Lorentz invariant, i.e., it depends only

on the product uv). Then, functions f(z) become functions f (u,v) defined on

[0,00) x [0,c0), and we can define their Laplace transform

Flc B) = / fo ” fiizd—”e—w—ﬁvf(u,u), (2.5.10)
and its inverse
1 e+ico —
flu,v) = W /v[c-—ioo 2dadf e°”‘+ﬁ”f(oc,,6), (2.5.11)

where ¢ is any real number such that the line over which we integrate in {2.5.11)
is to the right of 2ll singularities of Fla, B). It can be easily checked that feg=

N'ﬁ. Thus, what I mean by the right hand side of (2.5.9) is the inverse Laplace

+ Caleulation by R. Sorkin.
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transform of [1 — (e, f)]7 — 1, and one can check that

—2af
o, B) = / @y’ +yy _. F(208). (2.5.12)

Note that F satisfies F'(z) = F(z) — 1/z.
We can use the saddle point approximation to estimate the first term (while

the second doesn’t contribute, because the inverse transform of 1 is 26(u)6(v)),

au+ﬂu
2da ﬁ e, ﬁ — o /[dadﬂe , (2.5.13)

where ®(a, 8) = au+ fv - In(1—F(2ap)), by approximating the integrand with
a gaussian around the maximum of ®. The result is that
72 eql

€
Nyl o)) = o573 /a7 (2.5.14)

where ~ is defined by F (v%/2) = 1, and turns out to have the value 7 =

0.93254288. Therefore

~l
(N, (z,y)) ~ 0.33283897 —=. (2.5.15)

7l

Tests of the validity of (2.5.14) (in particular of the approximations involved
in-der'wing it} have been done. These involved checking whether it satisfied
the recursion relations derived from considering the paths contributing to Ny as
being extensions of different classes of paths in various Alexandrov neighborhoods
contained inside A(z,y). Whereas some results are in agreement with (2.5.14},
others are in slight disagreement (on the value of the proportionality constant in

(2.5.15)), and the question is not completely settled.

Width of the distributions




2.5 Causal sets sprinkled in Minkowsks space 78

One of our concerns, in the application of formulae like {2.5.5) and (2.5.6),
will be how close do we expect the value of Ny or Np to be to (Ni) or (Ny),
respectively, for a given Alexandrov set of volume V(z,y). In other words, we
would like to know the width of the probability distributions for Ny and Ny, a
much harder task than finding their mean values, and one which we will only start
dealing with. The squares of these widths, the variances of the distributions, are

of course

ok o= (Ve — (Nk))?) = (Vi) — (Ne)?
‘712\5, p={(Np - (Np))2) = (Nﬁ) - (Np)2

= Z(NiNj). - D AN, (2.5.16)

1]
The second term can be written using (2.5.5). For the first term, we notice the
following. Call N;;(z,y) the number of self-intersecting (¢, 7)-loops between =
and y, ie., pairs of paths from z to y, one with ¢ links and the other with k,
which are allowed to overlap by any amount. Then
N Ny N; for i #
- T 2.5.17
I %(I\T.;Nj —~N;) fori=1, ( )
so that
E(N:'Nj> = 22<Ni,j> + Z(Ni)- (2.5.18)
5,3 <7 i
To describe an {i,7)-loop we use two sets of intermediate points z1,22,...,%i—1
and Yi1,Y¥2,-.-,¥j—1, but (N;;) is not simply the product of two expressions
like (2.5.6) (this would be (N;}{N;)), because now the probability of a link
£ = Tay1 is not independent of the probability of a link y5 < ¥s+1, if A(Zg,Tas1)N
Ay, Y1) 7 . However, it is still possible that a generalization of the argument

that led to {2.5.5) will give an expression for (Ng,i(z,9))-
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Expected total number of relations

As the dimension of the Minkowski space in which we sprinkle our points
increases, the causal structure induced on them becomes more intricate. As a
result, we expect that, for fixed N, the total number of related pairs of points
~ out of the possible (1;{ ) increases with n. This is in fact true, and Myrheim
[16] showed that, if we call f(n) = (N”;)/(sz) the “ordering fraction”, i.e., the
expected number of related pairs of elements N, in the causal set over the total
number of pairs, its values for causal sets uniformly embedded in Minkowski

spaces of low dimensionalities are

3 4
1

LCHEl I S
[e 1]

[i]

&l
—

To obtain these results, we may proceed as follows. Consider N points sprin-
kled uniformly in an Alexandrov neighborhood A (of volume V =N p~1) in n-
dimensional Minkowski space. Then the expected number of elements to the

future of z € A is pV[JT(z) N 4], and the expected number of relations in A

(Nyt) = / V]I () N A dV. (2.5.19)
A

Number of inequivalent causal sets
I will now give a rough estimate of the number of causal sets on N elements
which can be faithfully embedded in n-dimensional Minkowski space. Consider
one such causal set and a faithful embedding of it in n-dimensional Minkows}:i
space, with mean distance { between embedded points and density p(=1""), so
that the causal set occupies a total volume V = Ni{" = N p~! = L™, where L is
thus a characteristic linear size of the causal set. Each embedded point p will

be free to move in a small region around its position, without altering its causal
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relations to other points. What is the size of this region? Suppose we move p in
a timelike direction. We can keep moving it while it does not change any causal
relation, i.e., by a distance s such that the volume V(s) = O(sL™ 1) swept by its
light cone is less than p~! (we assume here that the causal set is connected, and
its image in Minkowski space has a fairly regular shape, with a small “surface
to volume ratio”). Therefore, s = O(p~tL'™"), and our estimate for the volume
available to each point is s" = O(p'”L"""“z) = Q({"N'""). We thus imagine
the total volume V divided into cells of size s", of which there are a total of
L*/s" = O(NI™/N™™") = O(N") (many of them unoccupied: there are many
more cells than embedded points), and estimate the number of different causal
sets we can faithfully embed in V as the number of inequivalent ways of picking
N cells out of the N*, i.e., (Aﬁ) ~ 2(n—1)Nlog, N

We can compare this with the asymptotic estimate for the total number
of N-element causal sets (2.1.2) (assuming that the connectedness requirement
does not reduce this estimate significantly). We see that, for large N, only a
vanishingly small fraction of causal sets can be faithfully embedded in any given
dimension (at least in flat space}. This suggests that, up to modifications due
to possible embeddings in curved spaces, as N increases, the dimension in which
most causal sets are faithfully embeddable can be expected to increase as well,
and, since we know that causal sets have more and more a three-layer structure
(§2.1), that not only pixies exist for all dimensions, but that two- or three-layer

pixies exist for all dimensions.

Obtaining the metric
To conclude this section, I will illustrate, in this special case of flat space-
time, how the metric distance between two embedded points can be explicitly

expressed using only the causal set itself. 't Hooft [27] showed that, for any two




2.5 Causal sets sprinkled in Minkowski space 81

A

timelike related points z <y in 4-dimensional Minkowski space, the volume V
of the Alexandrov neighborhood A(z, y) is related to the proper time ! between

z and y by
nld 24V

V= le., lz,y) = (——)1/4, (2.5.20)

T 24’ 7
while, for = and y spacelike related, the proper distance is

s{z,y) = min I(u,v), (2.5.21)
v

where u is to the future and v to the past of both z and y. But these expressions
can be directly used for causal set points: e.g., the “expected value” for the
timelike distance between two causal set elements z and y after embedding in
Minkowski space is (2.5.20), where V' is the number of elements in A(z,y).

These equations are immediately generalizable to any dimensionality. Equa-
tion (2.5.21) does not change, while to generalize (2.5.20)_, we just notice that
in n-dimensional Minkowski space, the volume of the Alexandrov neighborhood
defined by = and y is twice that of a cone with base an {(n—1)-ball of radius {/2
and height 1/2:

2 2n(n—1)/2 " a(n=1)/2 ]
i (n —1)T[(n —1)/2] (5) T 2n—2n(n — 1)T{(n — 1)/2] ", (25.22)

which can again be easily solved for | in terms of V.

Notice that we could have tried to find ! just by counting the number of links
in the longest path from z to y. This latter method however is subject to larger
statistical fluctuations, and we do not know the coeflicient of proportionality
between ! and the number of links, which, roughly speaking, depends on how
“straight” the longest path is, and could be a function of n (and of  itself).

Furthermore, we will need the two methods together shortly.
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2.6 Notions of dimensionality of a causal set

Now that we have defined the conditions under which we have a satisfactory
embedding of a causal set in a curved lorentzian manifold, it might seem natural
to define the dimension of the causal set to be that of the manifold in which
we can faithfully embed it (provided we can show it to be unique). We will in
fact call this the physical dimension of the causal set. Such a notion, however,
is not entirely satisfactory from the mathematical point of view, since it is not
well-defined for all causal sets——actuali_y for almost none—, nor from a practical
point of view, since it does not lend itself to simple computation methods, and
it forces us to solve the full embedding problem for the causal set in order to
find its diméns-ion, instead of giving us a tool that can help us find one aspect
of the continuum approximation. It would be desirable to define a dimension for
& causal set which reduces to the physical dimension when a faithful embedding .
exists, is always well-defined, and is such that a computer can be taught how to
calculate it.

As we remarked earlier, the notion one would define by constructing a topo-
logical space from the causal set in the standard way we will describe in §2.7,
and the ones used in combinatorics {at least the linear dimension) are useless in
this respect, since they are not directly related to the physical dimension. The
causal dimension defined using embeddings in Minkowski space also won'’t do,
and in fact it seems that there can be no global notion of dimension that satis-
fies our requirements. We can instead define (several variations of) a quastlocal
dimension for a causal set, which we will call fractal dimension, associated not

with the whole causal set, but with different regions in it.

Consider first n-dimensional Minkowski space, and a region of finite volume
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V of arbitrary shape in it. If we rescale the region to a similar one of volume
V! = aV, then all linear dimensions in it will be rescaled by a factor oA/m, all
two-surfaces by o?/™, etc., and, similarly, all other quantities related to the region
will change in a computable way, in terms of o and n.

This suggests that we proceed in the following way, in the spirit of the calcu-
lations of dimensionality for fractals. Given two elements p, g in any causal set
P, count the number of elements V contained in A(p,q), and calculate one of
the many quantities defined by the elements in A(p, g), whose theoretical (sta-
tistical) dependence on the volume of the Alexandrov set and on the dimension
n is known for causal sets uniformly (and randomly) embedded in Minkowski
space (as discussed in §2.5, or in the examples below). Then, by inverting the
above relation, one can in principle obtain an effective dimensionality for this
Alexandrov set. This effective dimensionality n.ss is meaningful if there exists
a large region R of P, covered by Alexandrov sets all of roughly the same size
V, and all yielding the same n.g;. In general, however, if the calculation of n.gy
is repeated for different pairs of points, one will get different values, which just
reflects the fact that we are applying the method to a causal set not faithfully
embeddable in Minkowski space. We expect nevertheless the effective dimension-
alities to agree, if the causal set we consider is faithfully embeddable in a curved
manifold, provided they are derived from Alexandrov sets small enough that the
result is not significantly affected by curvature. Thus, if n.ss is constant for all
Alexandrov sets contained in R, for a range of volumes V down to volumes of a
few units, then we will say that n.sy is the fractal dimension of the region R in
P.

Which quantities can we actually use to calculate the effective dimension of

the Alexandrov set A(p,q)? I will give some examples..
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Length of the longest path

In n-dimensional Minkowski space, the volume V(z,y) of A(z,y) is related
to the proper time along the geodesic between z and y by (2.5.22). Therefore,
if p and ¢ are points in a uniformly embedded P, a similar relationship will
hold between the number of elements in A(p,q) and the length of the longest
path between p and ¢, up to statistical fluctuations, and, by counting these two
quantities for an Alexandrov set and inverting (2.5.22), we can estimate its n.gy.

Two things have to be takén into account, however. First, in the relationship
between the size of A(p,g) and the length of the longest path there is an un-
known coefficient, which could depend both on dimension and on the size of the
neighborhood, and should be calculated theoretically, or found from properties
of computer-genera,ted sprinklings of points in Minkowski space. The theoretical
problem is difficult, however, and large enough sprinklings are difficult to pro-
duce {and do calculations with); the numerical results obtained so far are not
very satisfactory.

Second, the reliability of this method depends of how big the statistical fluc-
tuations are. We understand the fluctuations in the number of points in A(p, g)
from the definition of uniform sprinkling: they go iike the square root of this
number, which, for la,rge. A(p,q), is a small fractional error. The crucial factor
is then the Auctuation in the length of the longest path. An estimate of it could
be obtained from a knowledge of the shape of the probability distribution for Ny,
the number of links in a path from p to g, whose expectation value is given by
(2.5.7): in particular, from the tail of this distribution for large N;.

Besides statistical fluctuations, a limit to the straightforward applicability of
this method (and all other methods) appears when A{p, g) becomes large enough

not to be negligible with respect to the radius of curvature of space-time. We
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will see in §2.7 how to turn this to our advantage, and in fact use it to estimate

the curvature.

Total number of relations

Another possibility is to consider a large A(p,¢) and count the number N of
points in it and the number of relations N, between them. Computing the “or-
dering fraction” N,g/ (g), and comparing the result with the expectation value
f(n) for various dimensions, given by the entfies in the table in §2.5 (suitably ex-
tended to higher dimensions if necessary), gives an estimate of n, ff. This method
seems potentially more reliable than the first one as regards statistical fluctua-
tions, because it is based on larger numbers, and N, will not fluctuate much,
since it is & sum of a large number of variables, each associated with the existence
of a relation betwgen two elements of P, and the central limit theorem tells us
that the fluctuations will be of the order of v/Nyy. In comparing it with other
methods, we should also take into account to what extent the small fluctuations
are offset by a weaker dependence of N, on n, particularly for high n.

Numerical results have been obtained,T by uniformly sprinkling 300 points
in an Alexandrov neighborhood of 2-dimensional Minkowski space (for sprinkling
algorithms, see appendix 3). The average n, s for all Alexandrov sets of size 0-30
was 2.1, and similarly for other ranges of sizes, with the best value, 2.007, for sizes

150-180. In 3 and 4 dimensions, only smaller sprinklings have been produced.

Midpoint method

A method which also uses large numbers is that of comparing N with the
number of points Ny, in A(p,r}, where r is the “midpoint” between p and g¢.
This corresponds to rescaling linear sizes by a factor « = 1/2, and thus volumes

by a factor Nysy/N = (1/2)": this ratio depends exponentially on n, for fixed

1 Results by D. Meyer.
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N, so this method is very good for large n. How do we define the midpoint
r? The most useful definition, among several possible ones, seems to be the
following. All points s in the “equatorial plane” of the Alexandrov set are such
that V(p,8) = V(s,q). Among these, 7 can be distinguished by the fact that,

subject to the above equality, V(p,s) is maximum for s = r.

One of the main advantages of the midpoint method is that it is very simple

to use, and it looks very promising for computer simulations.
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2.7 Causal sets sprinkled in arbitrary space-times

Until now, whereas part of the discussion in this chapter referred to general causal
sets, which could be faithfully embeddable only in a curved manifold, or not at
all, the quantitative results quoted were obtained from causal sets embedded in
Minkowski space. Such a restriction did not allow us to go very far in causal set
kinematics: the only interesting questions we could ask were continuum oriented
and about dimensionality; but, when talking about dynamics, it would limit even
more our possibility of understanding the relationship between causal sets and
continuum approximation, since we know that in general relativity the action
associated with a region of space-time is calculated from its curvature. For a
causal set, the ingredients we can use to construct an action are the various
elements of structure we have been identifying along this chapter {relations, links,
paths, loops, pixies), or other possible subsets that we might identify as “seeds”
of structure. We thus want to know how to extract topological and metrical
information from a causal set, and what effects topology and curvature have on
these elements of structure: how the results of §2.5 have to be modified in a more

general manifold.

Obtaining the topology

We have seen some results on how causal sets contain dimensionality infor-
mation. Can we get further topological information, i.e., does the causal set P
encode the topology of the manifold M it is sprinkled in? The way in which we
can hope to extract the “germs” of a notion of incidence, around which topology
is essentially built, from the causal set, is by constructing from P a finite topo-
logical space, or a finite simplicial complex—a set of triangles, tetrahedra and

analogous higher-dimensional simplices, which in simple cases can be considered
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as a triangulation of 2 manifold—or a, similar but more general, finite cell com-
plex. I have to stress that these constructions must depend only on the structure
of P itself, and not on, e.g., any mapping f : P — M. The standard ones are the
following (see, e.g., Stanley [65] and Sorkin [24b]).

To obtain a simplicial complex A{P) from P, associate with every element
a vertex, and with every chain of length k a k-simplex, whose vertices are those
associated with the & + 1 elements in the chain. Thus, if a j-chain is contained
in a k-chain (7 < k), then the corresponding j-simplex is a face of the k-simplex.
The resulting A(P) is called the order complez of P, and, obviously, its dimension
is the height of the causal set. (Notice that not every simplicial complex is the
order simplex of some causal set.)

To obtain from P a finite topological space T (P)-—essentially equivalent
to the order complex, which can be also obtained from T (P)—, use the same
underlying set for T (P) as for P, and associate an open set with every “past set”
(i-e., a subset of P containing the past of all its own elements—this is called in
combinatorics an order tdeal). Obviously, a base for this topology is the set of all
“elementary past sets”, pasts of single elements of P (or prineipal order ideals).
Notice that this is not just any old finite topological space, it is Tp: any two
distinct elements have distinct sets of neighborhoods (although all neighborhoods
of one m;':my very well contain the other—this topology in general is not discrete).
The mapping from finite causal sets to Ty finite topological spaces is a bijection,
and it is simple to give a procedure for going back from any such topological
space to its associated causal set.

It might seem at first that a simplicial complex would be more desirable than
a finite topological space. However, as we remarked regarding the dimension

of the simplicial complex, some of its topological properties are not related to
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those of the topological space we were hoping to get. The space T(P) defined
above has the same problem, but finite topological spaces have the following nice
feature.

Consider a manifold M and a finite open cover C; thereof. This defines a
finite Ty topological space 11 in which each point is one of the regions in which
the cover divides M, and the open sets in C, form a sub-base for the topology. (In
turn, we get from Ty a poset Pl,T which, if Cy is not a degenerate kind of cover,
has a unique rank function: the one associating to each p the number of open
sets of C; whose intersection defines it.) If we now consider an enlarged cover
Cs of which (1 is a subcover, we obtain, by the same procedure, a new finite To
topological space Tz, with a natural projection 7y : T3 — T1, which takes py € To
to the P, € Ti such that p; C p1. Proceeding ifi"this way, we obtain a sequence
of spaces T1 + T2 +— T3 + ..., with projections m; : Tiv1 — Ti. But such a
sequence, in the category of topological spaces, admits an inverse limit Too. This
inverse limit in general is not a Hausdorfl space, but in a mild way: if we define
an equivalence relation for in Too by z ~ ' iff they are not “Hausdorfl separated”
by the topology, i.e., there are no two open neighborhoods U 3 =z, u's 2!, with
% MU' = 0, then the quotient space Teo/ ~ is nontrivial, and, furthermore, it is
homeomorphic to M, the original manifold (alternatively, M is the set of closed
points in Too).

In our case of a causal set sprinkled in M, we can also define a cover of M by
choosing a collection of Alexandrov neighborhoods which cover it. Therefore, if
we kept sprinkling points, up to an infinite density, the causal structure on the
limiting sprinkling would contain the topological information on the manifold

(this is not surprising, given the continuum theorems quoted in §2.2). But,

+ I don’t call it “causal set” because the expression would be misleading in this context;
furthermore, this poset is not just locally finite: all its “future” and “past” sets are finite.
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because of our condition on the length scales of M, we expect this information to
be available even at a finite sprinkling stage. To be able to use this approach, we
should state precisely and prove this last sentence, which includes showing that
all the intersection properties of the Alexandrov neighborhoods which define the
cover of M are fixed by the structure of P.

A cover of a topological space also defines a simplicial complex, either by first
constructing the poset Py and then taking its order complex, or by constructing
the so-called nerve of the cover. In the nerve, to each element of the cover we
associate a vertex, and to each non-empty intersection of k elements, a {k—1)-
simplex, spanned by the k vertices corresponding to the k elements. We might
hope, therefore, that the nerve of an appropriately constructed cover of M .b_y
Alexandrév neighborhoods would be a simplicial complex with the right topology
to be a triangulatibn of M. This hope is supported by the fact that it is possible
to construct coverings of an n-dimensional M with open sets such that only
intersections of up to n + 1 of them are non-empty (which in fact is the basis for
the definition of the covering dimenston of a topological space), and thus such
coverings will have simplicial complexes of dimension n as nerves. The problem
in our case is that we don’t know whether such a “go0d” cover can always be
made out of Alexandrov neighborhoods, and, just like in the “truncated inverse
limit” approach above, we don’t know whether it is possible to choose a cover
whose intersection properties are expressible just in terms of P.

Can one construct a simplicial complex in a more direct way? For random
lattices in n-dimensional Euclidean space there are two procedures. The first is
the well-known Dirichlet-Voronoi {or Wigner-Seitz) construction, which always
yields a simplicial complex and an associated dual cell complex (see, e.g., Itzykson

[76]). To each lattice site we associate one n-cell, composed of all points which
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are closer to this site than to any other one, and is shaped like & polyhedron,
whose faces are (n—1)-cells of the complex. Each of the latter belongs to the
hyperplane bisecting, and perpendicular to, the straight line segment between the
site in consideration and another nearby site. When two such sites are associated
toa cdmmon (n—1}-cell, the line between them is a link in the simplicial complex.
If two sites linked to a common site correspond to adjacent (n—1)-cells, the three

sites together define a triangle, and so on (see figure 2.7.1, from (79]).

irichlet-Voronol complelX inp 2 dimensions : figure 2.7.1
T g

The second construction is a generzlization of the first one, and the gen-
eralization might be useful for its implementation on a causal set, although it

requires some additional structure to be chosen in the latter, I will give it for a
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given sprinkling in a lorentzian manifold, following closely what Lee [79] does for
euclidean space. (Lee’s construction uses, instead of Alexandrov neighborhoods
aligned with a vector field, arbitrary convex regions which differ from each other
by a translation and/or dilation. When applied to spheres, it is equivalent to the
Dirichlet-Voronot construction.)

Suppose (M, ggs) is a stably causal space-time with a sprinkling of points f(P)
satisfying our faithful embedding conditions. Then every choice of global time
function t : M — IR (always possible because of stable causality) determines a

unique triangulation of M. The time function ¢ gives a timelike vector field t% :=

g°t V)t defined everywhere on M. Among all possible Alexandrov neighborhoods '

A(z,y) in M we can now isolate the ones, which are “along t*", in the sense
that their endpoints z and y belong to the same integral curve of t2, and denote
them A;(z,y). Let us call “cluster” a set of n + 1 embedded points such that
there exists an A; on whose boundary they all lie, and which does not contain
any other embedded point. Because of our embedding condition (3), each cluster
will be contained in a convex normal neighborhood, and any two points of it are
connected by a unique geodesic {contained within A;). We can then make the
points of each cluster into a simplex (if more than two points lie on the same
geodesic, a degenerate situation which will happen with neglig'ible probability,
the simplex will be a singular one; another degenerate situation happens when
more than n+ 1 points lie on the boundary of an A;). The main claim is that the
collection of all these simplices forms a triangulation of M: the proof is essentially
the same as the one given by Lee [79] for flat euclidean space.

Of course, once we have the vector field t%, we can also define a riemannian
metric hgp 1= ggp + 21,15, and follow the construction using spheres with respect

to hgp. This possibility is attractive because, as we saw, it gives both a simplicial
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complex and a cell complex. The two methods are not equivalent, and which one
will be more convenient to use will depend on how simple it is to characterize the
“clusters” in each case, just using the causal set structure, since the construc-
tion, as given, heavily depends on the embedding. Furthermore, although the
assumption that the space-time be stably causal is not unreasonable for mani-
folds arising from faithful embeddings, one question to resolve, in trying to recast
the construction in causal set terms, is: how can we say “choose a time function”
in terms of P? Since a time function really chooses a slicing of M into spacelike
hypersurfaces, the corresponding notion for a causal set is that of rank function,
defined in §2.1, but this still doesn’t tell us how to choose clusters of points.
For a proposal for deriving topological concepts from posets, which however

does not seem suited to their interpretation as causal sets, see also Marlow [80].

Obtaining the metric

As we saw, causal sets will always be embedded in such a way that any
point zo will have an open convex normal neighborhood of volume much greater
than one. We thus choose Riemann normal coordinates in this neighborhood
for the description of the metric and the curvature, such that at zo the metric
has the Minkowski form guv (7o) = fu. Then, the volume of the Alexandrov
neighborhood defined by z; = ({/2,0,0,0}) and = = (—1/2,0,0,0) (i.e., z1 and
g lie on a timelike geodesic through o and are at a distance [/2 before and after

zo, respectively), is (Myrheim [16]):

V= %; {1 +1i? [%R(mo) + %Roo(zo)] + O(Ia)} ; (2.7.1)

which generalizes (2.5.20). We saw in §2.6 how to use (2.5.22), ie., (2.5.20)
generalized to higher dimensions, to calculate the fractal dimension of P. This

suggests that we generalize (2.7.1) to higher dimensions and use it, for a particular
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P faithfully embedded in (M, gq), to obtain a “statistical” quantity that we can
think of as related to the curvature of P, once the dimensionality of M has been
obtained from looking at small Alexandrov sets, and we can look at larger ones
for deviations from the flat space relationships.

It is important as well to derive the dependence of causal set properties, other
than the relationship between volume and length, on curvature, and to check the
results with computer-generated sprinklings of points in curved manifolds. The
main motivation, in this case, is to find out which quantities are more suitable to
enter the definition of the action (or amplitude), given the fact that the latter,

in general relativity, is just [RdV.
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2.8 Coarse-grainings of causal sets

As we have already remarked, we expect most causal sets not to be faithfully
embeddable in any manifold (M,ga). If we believed that in the final theory
the dynamically preferred causal sets, i.e., those whose amplitudes interfere con-
structively (in the path integral language we will adopt for the description of
dynamics), are such that they do admit a faithful embedding, then this remark
would not be a problem. Such a picture, however, is contrary to our expectations,
for at least two (related) reasons.

In the first place, recall the successes of the many Kaluza-Klein type theo-
ries, in which space-time is a manifold, but its topology at Planck scales is very
different from the effective large-scale one. Such a situation could not arise af-
ter faithfully embedding a causal set, because of our requirement on the length
scales defined by the geometry. Now, it is conceivable that our preferred causal
sets turned out to Be faithfully embedded in Kal_uza—Klein-like manifolds, with
'mternall manifolds of size much larger than the spacing between points, but it
is more appealing to believe that, although the above possibility may be partly
correct, the right way of looking at Kaluza-Klein theories is that they give an
indication that our large-scale manifold is only an effective approximation to
something which at small scales does not have a well-defined dimensionality or
topology, and that the (non-gravitational) fields we study on this manifold are
just remnants of a structure without a geometrical meaning.

Secondly, on quantum mechanical grounds, we are led to expect that the
microscopic structure will be characterized by fluctuations, or described by the
superposition of many different causal sets, and we certainly do not expect that, if
a causal set P is faithfully embeddable, any small variation of the causal structure

of P will lead to another faithfully embeddable causal set, since we could be,
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e.g., adding a link which creates one higher-dimensional pixie. Furthermore, if
the space-time foam picture has a physical significance, it implies in our terms
that most causal sets which contribute to a {euclidean??)} “path integral” are
not faithfully embeddable. It could be that they contain “one unit of topology
‘per Planck volume”, but they could equally well have one (pixie-like) unit of
dimension per Planck volume, looking roughly like Kaluza-Klein space-times with
different “internal” manifolds.

Finally, I might add, as an internal reason to this theory for wishing that not
all physically relevant causal sets be faithfully embeddable in a manifold, that,
if they were, not only would life be more boring, but we would lose our main
candidate mechanism for making new effective fields appear, in a purely “causal”

fundamental theory.

We must thus start to handle the more general case, and associate a manifold
to (certain) non faithfully embeddable causal sets. Since our arguments indicate
that the trouble lies in the small-scale structure of the causal sets, we introduce
the notion of coarse-graining, to smooth out this structure. This will take us one
step further in the study of kinematics of causal sets in their own right, and will
enable us to talk of a causal set representing a larger scale view of another,

A priori, one could think of (af least) two ways of defining a coarse-graining
P! for a causal set P. One of them is the analog of “lumping together” or
identifying elements in some set X into equivalence classes, and quotienting out
by this equivalence relation, inducing somehow a structure among the equivalence
classes (this is natural when dealing with topological spaces, or, like in Kaluza-
Klein theories, when a group action defines a natural equivalence relation}. In our
context, an equivalence relation is not so natural, aﬁd furthermore care should

be taken that no inconsistencies be introduced in the causal relationships among
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classes of elements, however defined; but a consistent definition is the following.
Consider a collection of Alexandrov sets A; = A(p;,¢;} C P such that U;A; = P
and the volume of all the A;’s is roughly equal to some value V, and induce on it
the partial order A; < A; iff p; < p; and ¢; < ¢;. This makes {A;} into a causal
set, which we can call a cover coarse-graining of P. A parameter p € [0,1] that
characterizes the amount of coarse-graining performed, with p = 1 corresponding
to no coarse-graining, can be defined as p:= V=l or p:= (N —V)/(N — 1).

The second approach to coarse-graining is provided by the notion of sub-
causal set., A subset coarse-graining of a causal set P will be & P/ C P, with the
induced partial order, satisfying a condition intended to ensure that it represents
a larger-scale view of P: we require that there exist a parameter p € {0,1] such
that the fréction of all n-element Alexandrov sets of P which contain k elements
of P! is approximately (z)pk(l — p)"~k. This definition is similar to (2.3.1) in
its “global® character, and, since it implies we can think of P’ as having been
obtained by picking at random a fraction p of the elements of P, it makes P'
appear sprinkled with uniform density in P.

Both definitions are meant to lead to coarse-grainings which can be inter-
preted as preserving only those features of P with characteristic volume-scale
larger than 1/p. In some respects, a subset coarse-graining is simpler to handle
than a cover coarse-graining, and it is certainly easier to think about. We will
however consider this definition of subset coarse-graining as a tentative one, since
it may be forcing too much randomness into P'. In particular, we would accept
a situation in which each Alexandrov set of P contains ezactly pn elements of
P!, if this is possible, and we would like to have the possibility of picking the
points systematically in some cases, to avoid situations in which the elements

of the subset are just as non-embeddable as P, e.g., because we are left with a
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high-dimensional pixie somewhere.

As regards the cover coarse-graining, one potential problem with it is that
we might pick a few A;’s which are strongly boosted with respect to the others
(i.e., they look very long, along null directions), and would have few relations,
of a kind that may make the resulting P' complicated in an undesired way.
One obvious {by now) way to prevent this is to align the A;’s using some rank
function in P. The additional structure that this presupposes on P may however
affect properties of P, in a way that should be investigated. To balance these
difficulties—coming in some sense from a mismatch between the prescription for
obtaining a cover coarse-graining and the way we associate a manifold with a
causal set, by a map that picks out points in the manifold——, it seems easier
to induce additional structure besides the causal one on a cover coarse-graining

than on a subset coarse-graining, as we will see below.

Effect on geometry

From our motivation for the introduction of coarse-grainings, it is clear that
the most important question to address is that of the effect of coarse-graining on
the embedding of a causal set in a manifold. First of all, whichever definition we
choose, since the natural notion of volume in a causal set applies to the original
P, before coarse-graining, the density of embedded points in a faithful embedding
(if it exists) of the coarse-grained P' will not be unit, but p.

As regards dimensionality, it is trivial to show that

Lemma 8. If a causal set P has causal dimension n, then any subset coarse-
graining P’ of P has causal dimension n < n.
Proof. Obviously, if P is embeddable in n~-dimensional Minkowski space, then so

is any P' obtained by removing elements from P. .
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It is very simple to construct examples of subset coarse-grainings that do
not affect the causal dimension of a causal set; in particular, if P is a very large
faithfully embeddable causal set, e.g., one obtained by sprinkling peints in a
manifold, then coarse-graining it with a factor p not too far from 1 should not
make any difference in its dimension. On the other hand, consider the extreme
case of a coarse-graining of P, with edim(P) = n, down to a set with fewer
elements than those in an n-pixie (in the limit, just 1): this will necessarily
imply edim(P') < edim(P).

For the cover coarse-graining, similar arguments are harder to make. A result
like lemma 8 would hold, e.g., if one could choose in each set of the cover an
element r; € A;, such that r; < r; iff A; < Aj, since then the causal set {A;}
would be equivalent to the subset coarse-graining {r;}, but it seems unlikely that
such points exist in general. It cannot be excluded that, if the cover is “bad”
in the sense described above, new higher-dimensional pixies are created by the
links of the “long” Alexandrov sets, thus increasing the dimension.

The effect of either coarse-graining on other notions of dimension (fractal,
physical) is also hard to establish, but we can conjecture that, even for physical
dimension, the general effect on a large causal set will be similar to that implied
in the remarks above, which can be qualitatively represented in a curve like that
of figure 2.8.1. After some degree of coarse-graining, an initially non-embeddable
causal set can acquire a well-defined physical dimension, which might however
correspond to a Kaluza-Klein type manifold, and need not be the “macroscopic”

dimensionality of the causal set, obtained by further coarse-graining.

As regards topology, we will assume that we can start talking in a meaningful
way of the topology of a causal set when we can produce from it a simplicial com-

plex and/or cell complex using the Dirichlet-Voronoi construction. At this stage,
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the topology might be too complicated for a faithful embedding to exist. After a
sujtable amount of coarse-graining, if such an embedding becomes possible, the
topology might still be non-trivial, either globally, because of a possible Kaluza-
Klein nature of the manifold, or because of the presence of localized structures,
e.g., handles, in the manifold. Further coarse-graining (if desired) could then
wash out this remaining nontrivial topology.
Emergence of structure

As we mentioned above, the notion of coarse-graining is our prime candidate
mechanism for producing new effective fields in the continuum approximation,
starting from a purely “causal” fundamental theory. Let us see how this comes

about. After we perform a coarse-graining, the resulting causal set P! will ob-

viously contain less information than the original one: it contains less elements,

and, just by looking at P', we cannot tell how many extra elements there were,
and how they were related. Are we interested in the extra information (since,
after all, it is only P' which will be faithfully embedded and give rise to our
continuum geometry)? Certainly yes, since, dynamically, the history we will as-
sociate an amplitude with is necessarily that represented by the original ;P, while
the amplitude we would calculate for P’ using the same procedure will in general

be very different, leading to a different interference with other histories, and thus
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to a different selection of dynamically preferred causal sets, which are the ones
that determine the classical limit. From our experience with effective theories, it
seems plausible, however, that the amplitude for P can be expressed in terms of
P’ and the “extra information” I mentioned.

But how can we preserve the information on the original causal set in the
coarse-grained one? We can do this by attaching numbers to various elements of
structure in P!, which tell us where the additional elements were and how they
were linked. As an illustration, consider the following examples. If P!is a subset
coarse-graining of P, to each element p' € P' we can associate the number of
links it had in P (or extra links), to each pair p’ < ¢' the volume of A(p',¢') in P.
If P' is a cover coarse-graining, to each element p; = A; € P! we can associate
the number of elements in the original A_(pi,q,-) C P, to each pair A;, A; the
number of elements in A(p;,¢;) N A(p;,45)s .-, to each collection A;, A;,..., Ax
the number of elements in A(p;,¢;) N A(pj,q;) N ... N A(pg,qr). This last pos-
sibility is suggestive, since we expect the A;’s with non-empty intersections to
be “nearby”; in particular, if we had defined a simplicial complex from P, a
collection of k nearby A;'s would define a k-simplex in the complex. One can
envisage the possibility of associating a different “field” to each k-skeleton of the
complex, which then, by its nature, would correspond to a different realization
of the local symmetry group in the continuum approximation, i.e., to a different
kind of tensor field (including “internal indices™?), and, if we had available the
cells of 2 dual complex, like in the Dirichlet-Voronoi construction, “fields” asso-
ciated with {n—k)-cells could have a natural interpretation as k-tensor densities,
Gual to k-forms defined on simplices (this is a standard association—see, e.g.,
Itzykson [76}).

It is therefore natural to think that, assuming we had found a way to encode
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:n P' the “extra information”, the “fields” thus defined would be something like
a lattice version of the ordinary fields we deal with in particle physics. It would
be nice and simple if this were the right picture, but we should bear in mind
that between the length scales at which particles appear pointlike to us today
and Planck scales there is a difference of 17 orders of magnitude, and thus what
we call elementary particle might be an enormously complicated object in our
description {we don’t expect to be forced to coarse-grain a causal set by a factor
close to 10171), On the other hand, the grand unification (GUT) scales are only
about a factor of 10% larger than Planck scales, so it might appear that GUT
physics is describable in relatively simple terms.

But there is room for other, intermediate structure to manifest itself between
the causal set level of description and the one in terms of fields in a smooth
4-dimensional background. Recalling the remarks we made about the effect of
coarse-graining on topology, we see that the structure which appears as fields on
a macroscopic manifold may appear as geons, wormbholes, foam-like structure or
“internal manifolds® at a smaller scale, and be “purely causal” at the smallest
ones. In the transition from each stage to the next, there will probably be an
averaging process, which will make fundamentally different structures appear
similar. The level of description we will use for a given phenomenon will then
depend on the simplicity of the description at each level and our desire to account

for it in the most fundamental terms.
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2.9 Causal sets approximated by differentiable manifolds. II

To wrap up the discussion. of cauéal set kinematics, I will now put together the
V;'i.I‘iOIIS concepts introduced along this chapter, and outline the qualitative picture
that is emerging, on how individual causal sets can determine a continuum with
its additiénal structure, The main result we would like to prove in this context
is our “main conjecture” of §2.3, for which I will only be able to provide the
sketch of a proof, and summarize the various leads that have appeared towards
a possible proof.

For the case of causal sets which are known to come from a continuum sprin-
kling, if we assume the existence of n-pixies, finite causal sets that can force a

given manifold dimensionality n, then, using lemma 8, we can show the following:

Theorem 2. If we randomly sprinkle points in any finite region of a Minkow-
ski space of arbitrary dimension n with increasing density, we will certainly end
up ;,fﬁer a finite number of steps with a set of points whose causal relations define
a causal set P with causal dimension n.

Proof. Suppose n-pixies have size |P,| = N. Then define N regions $; of n-
dimensional Minkowski space in the following way. Embed an n-pixie P, in
this space and take a neigizborhood of arbitrary (small enough) fixed volume V
around each of its points p;, such that, if we moved each p; arbitrarily within its
corresponding neighborhood, we would not affect the causal relations between
them (this is always possible, if none of the p;’s are null related—see the first
footnote of §2.4). Once we have-these regions §;, discard the original P, and start
sprinkling points at random in the space. After a certain finite number of steps,

we will have at least one point in each $; (more precisely, the probability that a

given S; will contain no points when the density is p is given by e_PV(S")). At
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this stage, the sprinkled points define a causal set P. This causal set has causal
dimension n. To see this, consider a sub-causal set P’ obtained by choosing one
point inside each §; and discarding all other points. P’ is then equivalent to Pn
by comstruction, thus its causal dimension is n. Then, by lemma 8; the causal
dimension of P has to be at least n and, since it cannot be greater because it is
embedded in n-dimensional Minkowski space, it is precisely n. .

We will assume that this theorem still holds in any curved space-time in which
all length scales defined by the metric are bounded below by some constant, for
the following reason. For the theorem to hold, we really need only sprinklings in
a compact region of Minkowski space, since all we use in the argument is a region
containing all the §;’s, and such a region can certainly be taken to be compact.
Therefore, if a curved space-time M satisfies the assumption above, when the
sprinkling density Has become very large compared to the density defined by
the length constant, the local regions of M which are approximately flat contain
many embedded points, and we are locally in a situation in which we can apply
theorem 2. The only implicit assumption we are making about causal sets in
this generalization of theorem 2 is that n-pixies are such that their size does not
increase too rapidly with n—at most like 2™, a very generous bound, with their
height being roughly constant—, so that we have a bound on the size, in natural

units, of the compact region we need M to be approximately flat in.

Our “main conjecture” was that any pair of faithful embeddings, f : P —
(M.gas) and f' 1 P — (M ,G.;), are related by a P-preserving diffeomorphism
¥ : M — M which is an approximate isometry of g, to g,- The following
argument is a start in proving such a statement.

To begin with, let f : P — (M, g,) be a fixed faithful embedding of dimension

n. From the point of view of M, f(P) is a sprinkling of points to which (the
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generalized) theorem 2 applies. Therefore, P must contain “small” n-pixies as
subsets. But the mapping f' is also a faithful embedding of P, hence the existence
of n-pixies in P forces the dimension of M’ to be at least n. Since the same could
have been said interchanging the roles of M and M'. we have n' > nand n > n/,
or n=nl

Let us call “small” an Alexandrov set A(p, ¢) of P whose height is a few units.
Then the corresponding Alexandrov neighborhoods A{z,y) in M, where z = f{p)
and y = f(g), and similarly in M!. will also have a small volume in this sense, as
measured in the respective metrics; whence they must be approximately isometric
to Alexandrov neighborhoods in n-dimensional Minkowski space, since otherwise
the geofnetry in them would induce length scales incompatible with condition (3).
Certainly P can be “covered” by such small Alexandrov sets. We thus have a
covering of P by sets whose pairwise intersection properties are fixed by the causal
relations (elements in the intersections are characterized by their causal relations
with the maximal and minimal elements of the Alexandrov sets involved). This
goes over, in each manifold, to a covering made of neighborhoods which are
approximately isometric to the corresponding ones in the other manifold, and
;with fixed pairwise intersection properties. This makes it plausible that the two

manifolds will be globally approximately isometric.

If our main conjecture were proven along the lines of the argument above,
we would be only at the stage the continuum theory of causal spaces is: we
would know that, if a faithful embedding exists, then it is (essentially) unique,
but we still would not know how restrictive the assumption is for a causal sets;
.in fact we would not know how to characterize it from the causal set point of
view. To understand such a characterization we would need a constructive proof

of the uniqueness conjecture, which used, e.g., some of the simplicia.l complex
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constructions mentioned earlier. Such a proof would, along the way, deal with the
issue of when the simplicial complex actually is the triangulation of a manifold,

and, perhaps, how many different causal sets give different triangulations of the

same manifold.
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3. DYNAMICS OF CAUSAL SETS

3.1 Causal sets and sums over histories

We must now discuss how to handle dynamics with causal sets. As I remarked
earlier, there are reasons to look for a fundamental structure of space-time which
is truly unified and self-contained, with quantum structure, including dynamics,
built into it, so that one will not have to apply some quantization procedure to
a previously defined classical structure. This means more than just skipping the
formulation of & classical version of dynamics when building up the theory, and
going directly to quantum dynamics. However, for lack of a deeper understanding
of the relationship between quantum theory and the various levels of description
of space-time geometry, the latter is precisely what we shall do.

We will follow the sum over histories framework familiar from path integrals,
and our main task will then be that of ﬁhding a reasonable expression for the
causal set action (or amplitude), to be used in selecting whole classes of causal sets
as contributing to making up a continuum, and to understand what consequences
these collective effects might have on this continuum, possibly of a kind that
would not follow from collective effects due to a superposition of continuum
geometries. The approach can be thus criticized for putting quantum mechanics
in—including the continuum of complex numbers with which we define the basic
amplitudes—“by hand”, but our hope is to produce a reasonable theory, which
can be argued to reproduce general relativity in the continuum approximation,

and which might give us some insight into a deeper level, at which quantum
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dynamics appears naturally.

The sum over histories quantization is a more natural procedure for handling
causal sets than, say, canonical quantization, since the latter uses in a much more
essential way structures induced on hypersurfaces, which are much less natural
for causal sets than they are for general relativity. The reason for this is that a
causal set does not induce anything natural on a maximal antichain—the analog,
é,s we saw earlier, of a spacelike hypersurface—which can then be evolved; in fact,
by their own nature, causal set elements do not persist in time and there is no set
on which one knows how to define a configuration space {we will make, despite
this, an attempt to formulate a notion of evolution for causal sets below}.

Causal sets are not the only approach to quantum gravity in which defining
configuration variables and momenta is difficult, since already in topology chang-
ing situations in the continuum we face similar difficulties. Besides, we may not
' wish anyway to formulate a fundamental theory of quantum gravity in terms
of states and measurements on a surface, but give instead more importance to
histories and more realistic measurements distributed in space-time: after all,
using quantum fluctuation-type arguments, we should not expect to be able to
say what a spacelike hypersurface is if we can’t say what a space-time point
is. Finally, it is difficult to define a quantum theory based on canonical quan-
tization, which implements the full 4-dimensional diffeomorph;sm invariance, S0
important in classical general relativity. Similarly to what I said regarding the
notion of continuum, we could take the point of view that it is our cultural prej-
udice, formalized starting with Newton, which makes us talk of the evolution of
states defined at a certain time, and distinguish physics into initial conditions

and evolution equations (the need to overcome this distinction has been stressed,

e.g., by Wheeler and by Wigner).
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Sums over histories, however, still use spacelike hypersurfaces; in this sense,
we could compare the role of the path integral formulation in quantum dynamics
to that of general relativity in the continuum question: just like general relativity
did not have anything new to say directly about the- use of the real numbers as the
thing space-time is “made of”, but contained the seeds for a deeper understand-
ing of the question, so path integrals still make use of spacelike hypersurfaces
and configuration spaces to allow us to calculate quantities of physical interest,
although the concept of “state of a system” is not so extensively used, and the
“initial conditions” can be replaced by the more covariant notion of choice of &
subset of the set of all possible histories of the system. In fact it seems natural to
try to question the existence of various structures, like the apparatus of states and
observables, in the conventional quantum theory, similarly to the questions we
were asking two chapters ago about space-time (following many authors, among
which Penrose [18]), and to speculate on the existence of a more fundamental
quantum theory lacking this apparatus, making again the conjecture that this

theory will naturally merge with a fundamental theory of space-time.

Path integrals without hypersurfaces?

T will mention here an interesting idea of Sorkin {38} which goes a long way
towards freeing the path integral formulation of quantum theory from the use
of spacelike hypersurfaces, starting with a restatement of one of the basic facts,
how the usual path integral formulation expresses the quantum mechanical laws
of probability, in a perhaps unconventional way, which is intended to be as general
as possible, in terms of the kinds of questions one asks from a quantum theory.
In the path integral formalism one typically partitions the set of all histories into
subclasses Ei, Fs,..., chosen, e.g., by some conditions on the histories in some

compact region § of space-time, and calculates relative probabilities associated
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with different subclasses. To calculate these probabilities, we proceed as follows.

Choose a spacélike hypersurface L, defined by the two conditions that “time”,

defined in an appropriate way, has a constant value ¢; on it, and such that $ is
to the past of it. Then, for a given subclass E,

2

Pt = [do [lenesti]

QEC Eqv‘c

(3.1.1)

where C is the configuration space on L, and the paths v we integrate over—here
not causal sets necessarily—for each ¢ € C are Eg = {7|(tc) = ¢} N E.

Thus, in this formulation, we don’t need to ask questions that include fixing
4{t) for some t—although conventionally one fixes « at a final time t, in which
case one can identify ¢, with ¢ and avoid having to perform the integral over dg
in (3.1.1)—, but nevertheless we are forced to define a spacelike hypersurface %
and a configuration space on it. This L is just a mathematical tool and plays
apparently no physical role; indeed we are free to choose any T subject to the two
conditions stated above (3.1.1); unitarity of the evolution of the physical system
is what guarantees the answer in (3.1.1) to be independent of Z..

Following Schwinger, let us now expand the right hand side of (3.1.1):

P(E;t,) = / dq( / [dﬂeiSh})( / [dn] efsm)*

geC Eg.te Equ,
- / dg( f ldn] ST f [dw’]e“si”']). (3.1.2)
geC Eq.!c Equc

Suppose that S[4] is such that, when the time-orientation of the path -y is re-
versed, it changes sign: S[y*] = —S[v]. Then the second integral over Eg;

in (3.1.2) can be thought of as an integral over histories 4* which, from ¢, go
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backwards in time (and meet again the requirements E on the way back):

P(E;t,) = /dq /[d(q o™ SIS (3.1.3)

where Eq,gc is the set of composite paths vy o ~™ such that both « and «' are in
Eg .. But, looking at this expression, it is natural to consider v o 4™ as a single

round-trip path 4 and, if S is additive, to write

P(E;t;) = /dq /[d»‘;] ¢S 1Al

geC E,..
= / [d7] €517, ' (3.1.4)
E.,

(notice that this is a real quantity, even though it looks complex), where Et, =
UqECEq,tca the collection of all paths that go forward up to a time {,, and then
backward in time. Equation {3.1.4) mentions spacelike hypersurfaces only indi-
rectly, in the ¢, requirement, and it makes no explicit reference to a configuration

space. We will call this the “closed time” formulation of the sum over histories.

Following the steps above for causal sets, we would thus have to come up
with an action S[P] (or better an amplitude-with-measure, “[dP]e“"S & ]”), and a
prescription for saying what ¢ = t. means in causal set terms; furthermore, either
S[P] changes sign under time-reversal, or we need to define a configuration space
C (with perhaps an associated boundary term in the action, expressed in terms
of elements of C, which makes this second possibility even less attractive). But,
as we will now see, causal sets offer the possibility of eliminating all trace of I,

by a suitable generalization of what we mean by “time”.
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Time

A definition of time is essential for dynamics, as we have seen. It provides
part of the conditions used to select the classes of paths which contribute to sums
over histories and variations of a path, and its choice, although probably simpler
than that of the amplitude, is also crucial in determining whether the dynamics
satisfies the desired properties (see §3.2 below).

In a proposal by Sorkin [38], time is taken to be defined in terms of the volume
of “pasts sets”, in a manifold or in a causal set. One of the simplest possibilities
is to define ¢ as the volume of the past of a single element p € P (for a causal set),
and the spacelike hypersurfaces used in equations (3.1.1) to (3.1.4) are those in
which this ¢ is constant. In the continuum implementation of this proposal, we
obtain a “modified” path integral version of quantum gravity—in the standard
one, no time restriction is placed on the paths. But results obtained in this
version of quantum gravity, with a simplified, finite-dimensional configuration
space, indicate that it may lead to non-unitary evolution. In particular, the
classical evolution equations of the theory, obtained by extremizing the action
with the constraint that all variations preserve the total time associated with the
metric about which we perturb, are non-local in time. This was to be expected,
because time itself is defined in a non-local way, such that the time increment
between two nearby hypersurfaces L and L4 a¢ can be calculated only by looking
at the whole past of the hypersurfaces, and not just at the region between them.
In this case, a consequence of this fact is that a metric which is a solution of the
classical equations for a time ¢ cannot be obtained by extending a solution valid
for a shorter time.

We have therefore considered a second possibility for ¢, the total past volume

of a hypersurface, with the condition that all elements, or points, of it have the
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same past volume. In this way, the classical evolution equations—and their cor-
responding Schrodinger-like, or Wheeler-De Witt-like equations—are more likely
to be local in time.

The most interesting possibility, however, comes from relaxing one condition
in our second definition of time: we can choose histories by requiring only that
their total past volume have a fixed value, and call this the time. In connection
with the closed time formulation of the sum over histories, this implies that E‘tu
in (3.1.4) is defined just as the set of paths with total volume 2t., which meet
both the conditions defining the subclass E and their time-reversal: no mention
whatsoever is made of spacelike hypersurfaces (except for the fact that the paths |
have to “turn around” somewhere).

For any choice of time, when we perform the variations of the histories to
find the classical field equations, we will impose that all variations satisfy the
time constraint that the final hypersurface be given by ¢ = const = i.. This is
equivalent to adding a Lagrange multiplier term to the action and varying freely
the resulting modified action. Thus, if we choose as time the total past volume,
without additional conditions, the modified action is § + A(fdV —t.), while, if
time is defined by the past volume of individual points on T, A becomes a field

over L.

Evolution of a causal set?

One of the remarkable features of causal sets is their essentially covariant,
space-time nature. As we discussed, there isno such thing as a “3+1 formulation”
for causal sets. Nevertheless, in the continuum approximation to the theory we
want to recover general relativity, which does admit a 3 +1 formulation, where
one considers a spatial metric on a hypersurface and its second fundamental

form (or some other equivalent tensor field) as the dynamical fields, and solves
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an initial-value problem to find the evolution of these fields once their vaiues at
some initial “time” are given (together with some prescription for what kind of
foliation into constant time surfaces one wants the resulting space-time to come
out with). We coﬁld thus wonder whether there is any notion of evolution that
can be formulated already at the causal set level, and goes over to the standard
one in the continuum approximation.

A positive answer would not just be potentiaily useful for calculations with
causal sets, but it would also throw further light on the relationship between
discrete and continuum descriptions of space-time. Another, perhaps more im-
portant in practice, reason why we would like to know how much can be said
about 3 + 1 splittings of causal sets is that they might be necessary to describe
causal set dynamics in the path integral formulation, as indicated above, unless
its closed-time version can be used. Finally, some approaches to fundamental
structures that people have thought about try to build in quantum dynamics by
generating elements of structure in an evolution-type picture (like Finkelstein’s
idea that I mentioned in §1.2, and other approaches that resemble cellular au-
tomata). |

But evolution of a causal set does not have to be equated, as in the continuum,
with “path in phase space”. We can consider the question we have at hand as
similar to the one we discussed in the context of coarse-grainings: how can we
encode, in one piece of a causal set, information that will enable us to recover
the missing, time-evolved, piece? In some cases this question has an answer.

Suppose we have a causal set P and we interpret it as representing all the
evolution of a larger causal set, up to a certain “time” , represented by the set of
maximal elements of P. We can add oﬁe more layer to P by giving an arbitrary

collection {R;} of antichains of P, and interpreting each R; as one element of the
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new layer, identified by the elements of P which are linked to it and to its past:
P' = PU{R,}, and two elements of P are related in P! iff they were related in
P, while p<_, R; iff p € R, and all R;’s are unrelated to each other. Then we
can add a second layer by assigning a collection of subsets {R!} of P’ to define
P" = P' U{R}}, and so on.

Of course, having. added k layers to a causal set does not help to know what
the (k+1)-th layer will be, but this is just like in a manifold, where differential
geometry by itself gives us a formalism for evolving data on a hypersurface,
without telling us what the actual evolution will be: the prescription for evolving
comes from a space+time splitting of Einstein’s equation. A question to worry
about is instead whether this evolution for causal sets will be local. As we have
seen, and figure 2.5.1 illustrates, elements in the top layer of a causal set are often

linked to elements many layers below. Whether this will be a problem or not can
be learned only after more detailed studies are done of the link patterns in large
causal sets, faithfully embedded in a manifold (only for those do we really need

a local evolution).
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3.2 The amplitude: general considerations

Now that we have discussed the general framework we want to use for causal
set dynamics, including the choice of time, we should look at the other ingredi-
ent which goes into the sums over histories: the basic amplitude, a functional
A which assigns to each causal set P a complex number A[P] (neglecting for
now the possibility that we might have to define a configuration space as well).
The combined choice of time and amplitude is really the crucial question in our
approach to causal set dynamics. However, unlike the case in which one is con-
structing, e.g., some field theory for a new kind of field, we cannot be directly
guided, in this choice, by similarity with other theories, but we have to “start
from scratch”, and use only indirectly what we have learned from studying other
physical theories. It will be useful then to remind ourselves of the conditions we
would like our dynamics to satisfy, even before we try to find the “correct” one.

1 should emphasize, furthermore, that we cannot use analogies with lattice
gauge theories, in which the basic variables are continuous-valued fields defined
at discrete points (or links between them), nor with Regge calculus, the discrete
formulation of general relativity, in which the basic variables are again real-
valued variables attached to links between points. Onaly after coarse-graining
and embedding of the causal set in a manifold can we start.thinking of it as a
lattice, but the action must be defined for an abstract causal set.

The biggest “responsibility’; as regards properties of the dynamics is usually
given to the amplitude, but it is clear that different choices of time can make
dynamics satisfy or not the basic conditions I will state below. For simplicity of
discussion, however, I will talk mainly in terms of the amplitude, or the action

S|P] such that A[P] = €'F PLT After pointing out that those conditions go a long

+ Thus we would tend to say that the amplitude must be 2 unimodular complex number. We
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way towards ensuring that in the continuum approximation we recover general
relativity, with a possible cosmological constant, I will sketch an argument to
show that the cosmological constant is likely to vanish, while in the next section
we will see a few general forms for S, and one possible explicit expression for it,

some of whose properties will be studied later on.

First conditions

The general criteria for choosing one amplitude over another come from re-
quirements imposed by the continuum approximation. The properties we want
dynamics to satisfy, even before looking at the specific theory it reduces to in the

continuum approximation, are:

(1) existence of a classical limit: one should be able to formulate a vari-
ational principle for the theory, asserting that the histories (in our case,
causal sets) which contribute most to the amplitude for a given “process”
E are a set of histories “close to each other”, which all have approximately
the same amplitude (to “first order in the variation” the amplitude is the
same); the classical limit will be this whole set of histories (there won't be
a unique classical one, since there won’t be a “field equation” to select it

for us);

(2) existence of a continuum approximation: the histories which are
“close to each other” according to (1) should have similar geometric prop-
erties {insofar as these can be defined, using, e.g., simplicial complexes),
and admit approximations by space-time manifolds which are also close to
each other: the latter will define the classical solution in the continuum
view;

(3) (approximate) locality, or additivity of the action (or multiplica-
tivity of the amplitude): if the causal set P is divided into two separate

regions, i.e., P = Py U Py (with P connected, but P; N P, = @, as point

will assume this, although it is difficult to see how, in the continuum limit, the amplitude
associated with each geometry, resulting from the superposition of many causal sets, will
also turn out to be of unit magnitude.
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sets), then S{P] ~ S{P}+ S| Po), 1.e., A[P] = A|P]- A[P;], up to “boundary

terms”;

(4) independence of the probabilities of t.: the values of expressions like
(3.1.4) should not depend on the value of the time parameter, as an internal
consistency requirement on the theory. In usual continuum theories, this
follows from unitarity, but here we will consider it as a more fundamental
condition. Although certainly related to independence of t., unitarity will

be viewed more as a part of “phenomenology”.
The first two conditions usually are not even mentioned, since the second is sat-
isfied from the start, and the first is also automatically satisfied when one writes
the action for a continuum-valued theory as a functional of differentiable tensor
fields defined over tﬁe space-time region in consideration. But they are essential
here: existence of the classical limit, which is not guaranteed for all expressions,
as we will see, becomes a necessary condition for being able to write down the
continuum action as a functional of differentiable tensor fields. Locality is not
satisfied by all continuum theories, but it is simple to ensure, since it is equiva-
lent to the action being the integral of alocally defined quantity. Independence
of ¢, and unitarity is the first condition which is not trivially satisfied even by

continuum theories.

Finally, in view of the “closed time” approach to sums over histories described

in the previous section, I will add another condition to our list of desiderata:

(5) change of sign under time-reversal: if we replace a causal set P by

its dual P*, S[P*] = —S|P], or A[P*}] = A[P}".
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Relationship with general relativity

Let us now assume that conditions (1) and (2) are satisfied. Then we might
ask ourselves which expression for S[P)] is actually the “correct” one. It can be
shown by a simple argument that any expression which satisfies the first three
conditions above will give, in the continuum approximation, general relativity
with a cosmological constant, up to small corrections. This argument does not
rely on any specific form for S[P], nor in fact on very specific features of causal
set theory: it applies, mutatis mutandis, to many theories, for which general
relativity represents a low energy approximation to some more complete dynamics

(like induced gravity, higher derivative gravity, or string theory).

Let us thus consider any assignment of an action S[P} (or an amplitude) to
every causal set P, which admits a continuum classical limit and is additive (mul-
tiplicative). In that case, the action must take, in the continuum approximation,
the form of an integral over M of a locally defined scalar (density). This scalar
can be constructed from any tensor fields available in the manifold, but since
the quantum “sum over histories” washes out the anisotropy associated with any
single embedded P, the resulting effective action density can in fact only de-
pend on the metric g, itself (in other language, the result must be “generally

co*\ra:rie'l.rn:”),Jr and it can therefore be expanded as
Leff=L0+L2+L4+..., (3.2.1)

where Lg is just a constant (the effective cosmological constant), L is a multiple

of the scalar curvature, L4 is the sum of curvature-squared terms, etc. But since

t Strictly speaking, we should take into account the other fields on M defined by the causal
set coarse-grainings as well. Thus, in our argument we are in effect “integrating out” these
fields, and using the amplitudes to ask questions only about the metric.
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the action itself must have the dimensions of %, the coefficient occurring in the
term Lq; would be expected to be of order hﬂzpk'n in ordinary units, and for a
continuum of n space-time dimensions. Then, neglecting the relative minuscule
terms Ly+ Le+. .. leaves us with Lo+ L, or precisely the usual general relativity

lagrangian with cosmological term, Lo.

The reason why Lo does not by the same token dominate Ls, rendering it
negligible as well, cannot be understood purely from the above considerations,
but has to come from a more detailed analysis that uses explicitly the form of

S[P] and of ..

The cosmological constant problem

So far, I have tried to stress the connections between causal set dynamics
and aspects of continuum theories, in particular general relativity. I would now
like to point out a special feature arising in causal set dynamics, which does not
have any direct correspondence in the continuum approximation, but may have

important consequences for continuum dynamics.

As we just saw, we can expect the action, in the continuum approximation,

neglecting higher powers of the curvature, to be of the standard form

Slow] = (26)" / Rd"W A / &, (3.2.2)

where % can be used to define the gravitational constant (e.g., in 4 dimensions we
set 2k = 167G, and A is the cosmological constant. Not only the continuum ac-
tion, but élso what to do with it, e.g., how to determine “classical paths”, should
be derived from the fundamental causal set djrnamics. In the latter, we perform
“small variations” in the causal set and check how much S[P] changes. Defining

“small variations” of P is hard, and to do it properly we would need some notion
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of distance or topology on the set of all causal sets, or at least on those which
admit some continuum approximation. This, in fact, is the causal set version of
the approximate isometry question we were dealing with in §2.3; the two things
shduld be related by the fact that when two causal sets are “nearly isomorphic”,
in their continuum approximationé the metrics wiii be “nearly isometric”, and

similarly for the other continuum fields defined along the way.

For the sake of the following argument, let us neglect all fields other than
gab, induced by P in the continuum (e.g., assume that they vanish because P
was faithfully embeddable from the beginning). Then, among the possible small
changes of P, there_will be some which only induce a small change in ggb, and
some which are not representable as changes in the continuum geometry, because,
say, they are fluctuations in dimension or topology. For gq to be a cla.sa:.ical
solution, the expression (3.2.2) (with the addition of the Lagrange mulfiplier
term) should be invariant under all these changes. Suppose now that one of the
“small changes” we can make on P is, e.g., to transform it into P X Pf , where
P is the diamond-shaped 4-element causal set (P(%M ). This will have the effect
of multiplying the total volume by 4—it is not really a small change—and, if we
think of Pf as a little circle, the manifold corresponding to the new causal set
will be metrically M x S§! (in this qualitative argument, we will also neglect the
fact that such a small S would violate our condition (3) on faithful embeddings},
so S — AV will just scale with.the radius of the circle. Thus, if its variation is
to vanish, S — AV must vanish itself. On the other hand, we know from the
variation of the metric g, that the Einstein equation with effective cosmological
constant A + A, Rgs — (A + A} gap = 0, must be satisfied. These two conditions
together imply that both R and the effective cosmological constant A + A must

vanish separately.
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3.3 The amplitude: possible expressions

One tempting way to go about constructing an action would be to find a rela-
tionship involving the continuum action density, i.e., the scalar curvature R, and
the quantities defined for a causal set, i.e., volume and causal structure, and take
this to be a defining relationship, in some sense, for the discrete case. Such a
relationship was already found in (2.7.1). After deriving this equality, Myrheim
[16] also noted that, not only does Einstein’s equation for g, guarantee that the
I? terms in (2.9.1) vanish, but the converse is also true: if for z; and z; along

any timelike geodesic through zo we have

V= 3;14- [1+00)], (3.3.1)

then Einstein’s equation is satisfied at zo. But, while (3.3.1) could be taken as
a basis for some hypothetical “classical” theory of causal sets which are known
to be embeddable in some fixed dimensionality, it is clearly not what we are
looking for: it relates volumes and lengths—which can be expressed, although
not too simply, in terms of causal sets—not to the scalar curvature, but to some
combination of the components of the Ricci tensor; and, most importantly, it is
based on manifolds, and it is far from from clear how and with what justification
we could extend it to general causal sets.

Instead, we want to define an action in terms of counting substructures in
a causal set. Several such substructures have been identified in chapter 2, and

different kinds of actions can be formed with them.

First of all, let us see why an apparently obvious choice doesn’t work. If we
define S|P} to be the total number of links in P (up to a factor 2, the number

of “nearest neighbors” of each point, summed over all points), it would be an
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integer, and an integer action—or any action which is an integer multiple of some
constant—cannot satisfy condition (1) (unless this constant is an extremely small
number, but then it would be hard to justify why we effectively introduce such a
small parameter in the theory). Furthermore, it would be badly non-local, since,
as we know, most of the links of a given element are to elements which are very
far from it. As pointed out by ’t Hooft [27], at first sight it is difficult to see how
the necessary (approximate) locality of the theory can be obtained, from some

natural definition of causal set dynamics.

Multiloop action
We define multiloop in a causal set P as any set of loops in P, no two of which
have any element in common. Then, if M is the number of distinct multiloops

in P, the multiloop action of P is
Sm|P]| =1n M. (3.3.2)

This action satisfies (1), at least to the extent that for sufficiently large P,
S,, can be made to vary by an arbitrarily small amount, but it certainly does
not satisfy condition (5), since Sp|P*] = Sm[P}. Its intuitive motivation is the
fact that loops capture curvature, and we use multiloops instead of single loops
because the latter don’t increase fast emough in number to vield an additive
action. Let us see how additivity works out with Sy,. Consider again P =P UPs,

Then

M|P] = M[P1] - M{P;} + {multiloops with one or more

loops shared by Py and Py }. (3.3.3)

But most of the contribution to M|P] will come from multiloops made of small

loops—there are many more of these, since they have to be non-intersecting—so




3.3 The amplitude: possible expressions 124

the second term in {3.3.3) will effectively be of the same magnitude as the first
term, with an actual value depending on the causal structure “near the boundary

between Py and P;”. Thus, upon taking the logarithm,

Sm|P| = In M[P] =~ In(2 M[P1| M|P:))

~ In M[PL] + In M{P;] = Sm[P1] + Sm[P2], (3.3.4)

for large causal sets. This argument does not take into account possible surface
terms in the deﬁnifion (3.3.2) of Sy[P], which, from our experience with con-
tinuum theories, could well be present. What form such terms would have for
causal sets is not obvious. If they are present, they do not have to go over fo the
surface terms of the continuum approximafionz the latter can be a combination
of causal set volume and surface terms.

Our argument for the locality of Sy, [P] is a handwaving one, and it would be
nice to see an analogy with a different physical theory, equally in danger of being
non-local a priori, where there is however a better argument to show its locality.
This anaiogy is provided by the 2-dimensional Ising model.

The Ising model is a square lattice, to each site ¢ of which we associate a
spin s; = %1, and with a total energy H = -3 . Jijs;s; (summed over all
pairs of sites), where we assume that J;; = J for 7 and j nearest neighbors, and
0 otherwise (and we have not included an external magnetic field}. It can be
shown (see Landau and Lifshitz {78]) that, for a lattice of N points, the partition
function Z = E(s) e~ H)/ET for a temperature T (k is the Boltzmann constant,

and (s) denotes a whole configuration of spins) can be written as
Z=(1-z)"N2N> og, (3.3.5)
s

where z := tanh(J/kT) and g, is the number of multiloops with a total of r links




3.3 The amplitude: possible expressions 125

{(where two loops may overlap at isolated points). This is similar to the total
number of multiloops, although one cannot actually take the limit z — 1, and
the multiloops are not exactly like the ones we use in (3.3.2), because loops can
intersect and their shape is not restricted by the condition that they be formed
by a pair of causal paths. On the other hand, it is known (see Amit [73]) that,
for temperatures near the instability value kTy = 2-J, where «v is the number
of nearest neighbors per point (4 in our case}, the Ising model is equivalent to a
local field theory: that of a scalar field with mass proportional to (T — Tp)/Tp
(in fact, even the Ising model “action” in itself is a local expression in terms of
the spins on the lattice).

The multiloop action is the only concrete proposal for a causal set action we

have. There are however other classes of possible actions.

Sums over Alexandrov sets

One way of ensuring that the action is local could be to build it, in a less
“global” fashion than the above Sy, from contributions of Alexandrov sets in
P—our usual tools for defining local but invariant concepts in lorentzian settings.
Thus, we could define

SalP] =) flA(p, ), (3.3.6)

p=<q

where f is any {non-integer) function defined on the Alexandrov sets of P. In
particular, f could have small values for large Alexandrov sets, and it can be
arranged to satisfy {5).

Functions on Alexandrov sets are the elements of the so-called incidence
algebre of the causal set, well-known in combinatorics (see, e.g., Stanley [65]).
This set of functions inherits a linear space structure from the field in which the

functions are valued (IR in this case), and has a multiplication defined by the
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convolution

VoA, 9l = D flA(pr)]glA(rq)l- (3.3.7)

rE€A(p,q)

We will see some examples of elements of the incidence algebra in the next section.

“Pixie” actions

Our last kind of possible action is perhaps the most promising. Let me
illustrate it with an example. We have seen in §2.4 that there are two 2-pixies,
duals (time-reversals} of each other, and three 3-pixies, of which one self-dual
and two duais of each other, and that in some sense this trend has to continue
in higher dimensions. Of the pixies that are not self-dual, indicate one kind by

P” and the other by PY. Then one definition of the action could be
Sp [P] = ln(NpA/va). (3.3.8)

We don’t know Eow this action grows with the total size of P (it might be neces-
sary, e.g., to use “multipixies” instead of single pixies), but it satisfies condition
(1} in the same sense as Sy, does, and more importantly it satisfies (5). This
proposal has some other nice features: it uses just pixies, and somehow the way
these are put together to form the whole causal set, which, in the same intu-
itive sense as Sy, captured curvature, captures the idea that small, locally flat
regions—the definition of pixie came from causal sets embedded in Minkowski
space—are put together to form a curved space; besides, the fact that pixies may
be of small height, maybe just two- or three-iayer causal sets, makes us think
that an action defined in terms of pixies has more chances of making sense of a
layer-by-layer evolution for causal sets, of the type outlined in §3.1.

As it stands, (3.3.8) is probably not the correct definition, but its properties

indicate that we should look for actions based on small subsets of P, possibly
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pixies. One way to get some insight into how pixies are distributed and related
to each other in a large causal set is to generate by computer a large sprinkling

of points in some background, e.g., Minkowski space, and look for them.
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3.4 Computer calculations

Causal sets are in a way the ideal subject for computer calculations, being not
only based on discrete sets of elements, but having as fundamental variables
quantities which are themselves discrete, in fact even boolean: a ‘yes’ or ‘no’ for
the existence of a causal relation between any two elements. Thus, it might seem
that calculating values for the action of a causal set, e.g., with a computer, has the
double advantage of involving no approximation inherent in the introduction of a
lattice, and no roundoff error due to the precision of the machine. The observation
is correct, but as regards physical applications it neglects one important factor:
the size of the causal set. Furthermore, in many problems we do need continucus
variables, like when we evaluate the effective curvature or some other kinematical
quantity in a region of a causal set, or the action.

| Nevertheless, let us outline some calculations which can in principle be done,
once we choose some S[P]. These will be of two kinds: the first one, more
“technical” is how to evaluate, say, the number of paths or loops between two
elements, the number of multiloops in a causal set, or how to recognize pixies;
ihe second deals with applications in which we assume we know how to calculate

the action for a causal set.

Counting things in a causal set

The first question to solve when doing computer calculations with causal sets
is how to store the causal sets. Suppose we have a labelled causal set P = {p;}
(the labelling is necessary here, and I will assume it is consistent with the partial
order in the sense that p; < p; (but p; # p;) =1 < 7). The most convenient way
to store P for calculations (when storage size becomes a main concern, one could

opt for some other approach) is that of an incidence matriz (or zeta function),
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the element of the incidence algebra of P defined by

1 if p; <p;
G, = { ' 7 (3.4.1)

0 otherwise,

an upper triangular, invertible matrix of 0’s and 1’s, which has, as it is easy to
see, the following properties (see Stanley [65]):

(1) (¢*)i; is the number of elements in A(py, p;);

(2) (g"‘),-,- is the number of multichains of length & betWeen p; and p;, where a

multichain is a chain with some elements possibly repeated;

(3) (¢ — 1)y = 1if p; < p; but p; # p;, and 0 otherwise; |

4) (¢—- l)i‘J is the number of chains of length k from p; to p;;

(5) (2— g‘):._jl is the total number of chains from p; to p;.
Related to the incidence matrix is what we call “link matrix” (or eta function)
1;,5, whose definition is the same as that of ¢; 4, but with p; < p; replaced by
p; < p;. The link matrix has similar properties to those of the incidence matrix,
including:

(1) (n*)s; is the number (Ny),; of k-link paths from p; to pj;

(2) (1-— n),'-_jl is the total number (Np)i; of paths from p; to p;.

The matrices ¢;; and n;; obviously contain the same amount of information,
and there is a simple way to go from one to the other: e.g., if p; <p;, the
Alexandrov set A(p;,p;) contains exactly two elements, so deleting from ¢; all
diagonal entries, and those whose corresponding entries of (gz),-j are greater than
2, gives n;;.

Some quantities associated with a given causal set are thus easy to calcu-
late. For example, to calculate the number of paths between p; and p;, enter

the causal set as a link matrix {obtained by reading them off some sprinkling

of points in a background, assigning some desired relations, or generating re-
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lations at random—in the last two cases, we must make sure that transitiv-
ity and non-circularity are satisfied), and find (Np)y; = (1 - n)‘._jl either as

t‘;"l"(Nk),-j = t’;“l"(n")ﬁ, where kpax is the largest k for which n* # 0 (the
height of A{p;,p;)), or by directly inverting (1 — 7} using some inversion routine.
By the way, this method could possibly be used, with many sprinklings of points
in n-dimensional Minkowski space, or by theoretical statistical arguments, to cal-
culate the expected number of paths between two points, which we would like to
know in connection with the definition of fractal dimension.

Suppose ﬁow that we want to use these matrices to calculate a less immediate
quantity, the number of loops between two elements in P. This can be obtained
as the sum over all k and I of the number of non-self-intersecting (k,1)-loops
between p; and pj, (Nifc,z)ij' Since the loops are non-intersecting, N,'c,l is not
given by NiN; (or' %Nk(Nk ~1)fork=1),asin (2.5.17). (Actually, the number
of (2,2)- and (2,3)-loops is correctly given by these formulae.} In terms of paths,
the problem arises because some paths from p; to p; start off as distinct, but
they merge before reaching pj, and they should thus not be counted as distinct
paths for loop calculation purposes, and/or they start off from p; as one path
and then branch off into several paths. Two or more paths merge at an element
pm € Alpi,pj), iff pm can be reached in more than one way from p;. Therefore,
in principle, one should be able to solve the problem by changing to 1 the (z,m)
entry in the appropriate matrix for the interval A(p;,pm) (Which will be greater
than 1). We have not yet found a way to translate this idea into a prescription
that will correctly take care of all the possibilities.

Calculation of the number of multiloops in a causal set P is also made difficult

by the requirement that the loops do not intersect each other. One way to simplify

the problem is to impose the stronger condition that the Alexandrov sets defined
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by the endpoints of the single loops be disjoint. This reduces the calculation to
the sum over all maximal disjoint sets of Alexandrov sets in P of the product of

the number of loops between the endpoints of each Alexandrov set.

Monte Carlo calculations

Amplitudes for processes or expectation values of observables are defined
in the path integral approach by summing over the contribution of all allowed
paths. But in some situations one can get by with a sampling of the set of paths
by a limited number of them. Using the Monte Carlo idea, one can randomly
generate paths < in the whole allowed set, calculate the quantity of interest
(namely 1 if we are looking for an amplitude, or the value of the observable for
the path otherwise), and weigh the result using the action, namely multiplying
it by e~ =11, where Sg[y] is the euclidean action of ~.

In causal set theory, theré are some conceptual difficulties with this proce-
dure. First, the expectation values I mentioned are only expectation values in a
mathematical sense: it is not clear if and how we can define physical expectation
values of observables, meaning results we would get by averaging the outcome
of repeated experiments. Second, euclideanizing the action, which is necessary
in the Monte Carlo method to obtain thermalization, cannot have, in causal set
theory, the meaning of performing an analytic continuation in imaginary time,
to get a euclidean signature for the metric, since in a positive-definite metric
there would be no causal order left, no structure to use in writing down a “eu-
clideanized” action. We could try writing down, for Sg[P], the same action as
S[P), and change however the 7 in front of it to —1. The mathematical meaning
of this would be, if anything, that of an analytic continuation in imaginary cou-
pling constant, but this does not tell us how to interpret physically the results. It

is worth investigating whether the closed time version of the sum over histories
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can give real values for these “expectation values” even in the lorentzian metric
case.

If one wants nevertheless to do calculations with causal sets using the above
method, the main difficulties in setting up a program to do so are the choice
of a random sample of histories, and the calculation of the action. Once these

are solved, one can calculate, e.g., the “expected dimension of space-time” as

5 pragslPleSVPLT

+ This suggestion is due to N. Cabibbo.
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3.5 Conclusions

What I have described in these two chapters is the proposal of a framework for a
small scale structure of space-time; I have given the first results obtained in this
program, and indicated the directions in which work should be done to establish
the usefulness of the approach. Obviously, this is still a theory in the making, and
most of the work still remains to be done, but a reasonably detailed qualitative
picture has emerged, that I will now summarize.

We assume that space-time is, at a fundamental level, a causal set: a locally
finite set of elements endowed with a partial order relation, that we interpret
as going over to the causal structure of space-time at macroscopic scales, when
we associate a manifold to the causal set. For suitably large causal sets, I have
discussed how it may be possible to find such a manifold, which approximates
well the causal set structure. In this manifold, either the original causal set
or, more likely, some coarse-graining of it, appears faithfully embedded, with
a density which depends on the amount of coarse-graining we had to perform,
but which should in any case be not too different from Planck density. We
conclude then that a causal set which reproduces the features of our universe
must have a number of elements equal to the volume of the universe in Planck
units, i.e., = (10?’0)4 = 10%°. The causal relation in this set is dynamically
determined; dynamics however picks out not a single causal structure, but rather
a whole class of them, which contribute a roughly equal amplitude in a sum-
over-histories formulation of quantum mechanics. These different causal sets are
also close to each other in the semse that the manifolds associated with them
coincide at large scales, thus defining an effective classical space-time manifold,
as our observations require for the visible universe {excluding however the very

early universe and inside black holes). Since the action of a causal set goes over
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approximately to the Einstein-Hilbert action, this effective space-time is expected
to satisfy the Einstein equation, albeit a priori with the possible addition of a
cosmological constant. We have seen furthermore that it is plausible that this
effective cosmological constant will actually vanish, since the fact that space-time
is a causal set forces us to impose a larger number of conditions for the classical
limit than the equivalent of the field equations in the continuum case.

What does such a picture say about the issues that motivated us to look
for a quantum theory of gravity in the first place, and what consequences does
it have? As regards the gravitational aspects of the continuum approximation,
one immediate consequence of this program is that all space-times “produced”
by the theory are free, by definition, of closed timelike curves, and they are
time-orien£able. Also by definition, causal sets cannot run into singularities, and
continuum space-times which develop singularities will correspond to causal sets
with well-defined “evolution” everywhere. Near the singular region, these causal
sets will admit faithful embeddings into manifolds that will look different from
the classica) solutions, or more likely will not admit any faithful embedding at
all: this is where causal set dynamics will come into its own.T At the same time,
causal sets have the necessary kinematic flexibility to represent topology chang-
ing processes, and, in general, a fluctuating geometry, with different topological
properties at different scales.

A shift in scale in causal set theory is performed by a coarse-graining, and

the change in topological properties it induces is accompanied by the emergence

4 Discreteness is the main feature in caunsal set theory which makes it free of singularities.
However, our formulation of dynamics, including the choice of time, reflected in the form
of the Lagrange multiplier term added to the action when varying it, also represents a
departure from the conventional formalism. In principle our time constraint can lead to
quantum evolutions which even in the continuum case keep the wave functions for the
geometry away from singular configurations. It is with this motivation that the continuum
studies of quantum gravity with a time constraint, as I was mentioning in §3.1, have been
undertaken.
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of new structure, in the form of fields. The coupling of these fields to the metric
at the continuum level will be determined by the form the fundamental causal
set action takes when expressed in terms of them, and this coupling will be an
important prediction of the theory, which can be compared with phenomenology.
Just like for geometry, all calculations of amplitudes involving causal sets by their
very nature will yield finite results (we restrict ourselves to finite causal sets),
and we cannot encounter the ultraviolet divergences of quantum field theory. We
can say that causal sets provide a physical basis for a momentum cutoff, although
an understanding of the renormalization group properties of the various physical
fields requires a more detailed analysis of the behavior of the action under coarse-
graining.

Two remarks seem appropriate about the relationship of causal sets to con-
tinuum fields. First, I should point out that the prescription I outlined for re;
covering these fields may need to be generalized or complemented by other ideas,
not based just on coarse-grainings. An example of what I mean is provided by
spinor fields, These are in general hard to get just from geometry, but there
are proposals for getting spin—% from pure gravity on a manifold (Friedman and
Sorkin [32]), and it might be that in causal set theory spinor fields will arise at
a higher level than the manifold, and will encode, macroscopically, non-trivial
topology that can be described in continuum terms at smaller scales. Second, a
precise identification of coarse-graining fields with continuum fields will clarify
the question of how to interpret physically the duality operation we defined on
causal sets. Although at first it might seem that duality is most naturally asso-
ciated with time-reversal T, CPT could be a better guess, for it appears to be a
more fundamental symmetry in continuum field theory, and, if, as we have been

doing, we interpret the * operation imvolved in the closed time approach to sums
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over histories (see (3.1.3)) as duality for causal sets, then duality always leaves
the basic amplitude in (3.1.4) invariant.

A success in the attempt to derive all observed fields from properties of causal
sets, in the manner described or in any other way, would be a much more concep-
tually satisfactory reduction of geometry and particle phenomenology to causality
than the one reached in the continuum theory, in addition to the practical gain
represented by the natural notion of volume we have available, as already ex-
plained. Even with the results of §2.2 generalized to Kaluza-Klein space-times,
and granfing that one could recover from these the correct 4-dimensional phe-
nomenology, the continuum theory does not provide a dynamical framework for

causal spaces, or a constructive procedure for obtaining the manifold and metric.

Modifications or extensions

If the procedure I outlined for obtaining continuum fields other than the
metric does not yield the correct phenomenology, one possible cure is to intro-
duce fundamental “matter” fields at the fundamental level, together with the
causal sets. This would be analogous to what is commonly done in Kaluza-Klein
theory, where one partially gives up the original idea of recovering the observed
phenomenology from a purely gravitational theory in higher dimensions and adds
extra fields on the Kaluza-Klein manifold K. Another possible modification of
the theory, discussed in response to questions we have been asked several times,
is to identify in causal sets structures which can be interpreted as string world-
sheets, or to map the causal set elements to strings rather than to points of a
manifold. The first suggestion is not easy to implement because the causal set
structure does not single out natural 2-dimensional “timelike” subsets; further-
more, it would not really give us anything new, because the action would still be

written ultimately in causal set terms, although possibly in string wording, and
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most likely the continuum reconstruction theorems would still aim at identifying
causal set elements with points, and discrete strings with continuum strings as a
consequence. Regarding the second suggestion, see the remarks at the beginning
of §2.3.

For the time being, more suggestive possibilities seem to lie in quite different
directions. One of these is given by the so-called Bergmann manifolds, a general-
ization of lorentzian manifolds to (certain) higher dimensions. A Bergmann man-
ifold (see Finkelstein [75]) is a differentiable manifold By of dimension n = N%,
with a complex vector space §(z) at each z € By, possessing a preferred skew-
symmetric tensor with N indices, €4 5.clz), and a linear isomorphism craAB'(:c)
from hermitian forms in S(z) to cotangent vectors at z, called “spin vector” (or

soldering form). Using this structure, we can define a “metric”

AA' BB cc’
Gab...c *— €AB..C €ap...Ct (20} gy R N (351)

which has N indices, and therefore makes By into a Finsler space, l.e., the line

element has the expression
dsV = gop. dz®dz? ... dz. (3.5.2)

For N = 2, a Bergmann manifold Bz is the same as a 4-dimensional lorentzian
manifold; but even for higher values of N, these manifolds have light cones that
allow causal sets to be realized by suitable embeddings of their elements as points.

A true generalization of the theory would consist in allowing the relation
defining the basic structure not to be antisymmetric. A set P with a reflexive
and transitive relation < is called a preposet {or quasi-ordered set) (see Stanley
[65]); the absence of the antisymmetry condition allows the existence of “closed

paths”. Bach preposet defines a unique poset by dividing by the equivalence
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relation p ~ ¢ iff p < ¢ and ¢ < p. There is no real motivation for considering
such a generalization at this stage, but it has often been remarked that our
observations do not imply that causality has to hold even at Planck scales, and
there would be no fundamental reason for not accepting as valid space-times,
ones with Planck-size closed timelike curves. If we did consider preposet theory
as a serious possibility, we would then have to explain dynamically the absence
of causality violation at macroscopic scales. Certainly, it is conceivable that
manifold reconstruction theorems could be formulated and proved for preposet
theory as well. For example, the 1-1 correspondence between finite posets and T
finite topological spaces described in §2.7 becomes a 1-1 correspondence between
finite preposets and finite topological spaces, the latter being T iff the preposet
is a poset.

Finally, a useful approach to our causal set theory might consist in shifting
the emphasis from the elements of a causal set to its past sets, or order ideals
(defined in connection with finite topological spaces in §2.7). The set of order
ideals of any causal set is also a poset, in which order is inclusion. But this is not
any old poset, it is a distributive latiice: any two elements p and ¢ have a unique
minimal element to the future of both, called the join p V ¢ (read: union), and a
unique maximal element to the past of both, the meet pA ¢ (read: intersection),
which in addition satisfy the distributivity properties pV {gAr) = (pV @) A (V1)
and pA(gVr) = (pAg)V(pAr) (this is always true for any collection of subsets
of any set, provided it is closed under union and intersection). Viceversa, from
any distributive lattice we can define a unique {unlabelled) poset whose set of
past sets is the given lattice. (This may seem strange, in view of the fact that,
for a given number of elements, there are many more posets than distributive

lattices, but one must realize that a given poset has many more order ideals than
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elements—each element corresponds to a prineipal order ideal—and we saw how
fast the number of posets increases with size.) Thus, a theory of distributive
lattices is not a generalization of a theory of causal sets, but the former have
many mathematicai-properties that can make them easier to work with. (This
advantage is similar to that of working with Alexandrov sets and making use of
the properties of the incidence algebra, that we have just started exploring in
§3.4.)
But the similarity of the symbols for “join” and “meet” with those for “or”

and “and” in logic is not a coincidence, and rewording causal set theory as a

theory of distributive lattices makes it acquire a taste of propositional calculus.
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APPENDICES

A.1 Two-dimensional calculations with the “diamond lattice®

A case in which calculations with a large causal set can be done with relative
ease (although it be considered not very representative of the generic causal set
situation in some—perhaps even most—aspects), is that of a {1+ 1)-dimensional
“diamond lattice” (a 2-dimensional square lattice tilted by 45°), shown in figure
A.1.1. This causal set is very unusual if one compares it with other causal
sets embedded in Minkowski space: each point has only two links to its future
and two to its past, which is a consequence of its noninvariance under Lorentz
transformations (compare with figure 2.5.1 and the remark preceding it). The
reason why we consider such a lattice is to get a feeling for the behavior of some
causal set-related quantities, in an attempt to obtain a better understanding of
the properties of various possible definitions for the action. In particular, we will
study how the number of loops and multiloops increases wit_h the volume of the

causal set.

Consider the {(141)-dimensional “diamond lattice” above, consisting of layers.

of points labelled from the bottom, the n-th layer containing n points, and the
portion of lattice from the bottom to the n-th layer a total of N = 2(n+1){n+2)
points. Due to the special symmetry of the lattice, a loop in it, as shown in figure
A.1.1, can be equivalently thought of as a set of diamonds, piled in an appropriate
way. Qur first goal is to calculate the number L, of different loops that can be

drawn in an n-step diamond lattice.
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Diamond lattice with loops figure A.1.1

Define the following quantities: [, is the number of loops starting at the
minimal point and ending after n steps (at any point in the {n + 1)-th layer)
and I is the number 6f configurations of diamonds which, after n steps, have
¢ “peaks”, so that I, = .. We are interested in calculating l,. The l;’;’s are
auxiliary quantities, which turn out to be useful because they satisfy a simple
recursion relation: f<;r any given configuration with ¢ peaks after n steps, there
are two ways it could have been obtained from one with ¢ peaks after n — 1 steps,
one way it could have been obtained from one with 7 — 1 peaks, and one way
from a configuration with 7 + 1 peaks, i.e.,

fo=0"Y 1o | I (A.1.1)

n—1
Thus, given the fact that, as can be easily checked,
lL=0 Vi>n-1; [™l1=1, (A.1.2)

we get, e.g., l% =1, lg = 0 for 7z > 1, and this allows us to obtain all other l:;’s by

iteration {notice in fact that we could set i =0, 19=1,and 2 =0for n > 1, as
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equivalent boundary conditions). We give here a table a few of the I obtained

in this way:

n; 1 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0
3 0 2 1 0 0 0 0 0
4 0 5 4 1 0 0 0 0
5 0 14 14 6 1 0 0 0
6 0 42 48 27 8 1 0 0
7 0 132 165 110 44 10 1 0

An alternative way of calculating these numbers is by noticing that I; , =

=1, l::+2 = 21, l::-a-a = 27% + 34, l::.;.‘; = %(%3 + 9% + 101), etc., and that in
general
i—1
] ! I+2
Lipy = 2(2111}6 +45%) {A.1.3}
=0

The calculation of [, still does not give us the number of loops contained in a
given number of layers, L,. To obtain this, we notice that L, is the sum over all
pairs of layers & < [ of [;_j times the number of points on the k-th layer where

the loops can sfart:

n—2 n—p
Ly = Z[(p-i—l) lq]
p=0 g=2

Y (A.1.4)

=Y (p+ Dy,
P

=0

where A, = Z;=1 lg is the number of loops starting at the minimal point and
ending after n steps or less. Notice that, if we define, similarly to %, ).:'L to be the

number of diamond configurations which end after n steps or less with 7 peaks,
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i.e.,
) . n a
M=)l (A.1.5)
g=1

so that A, = AL, then A} satisfies the same recursion relation as I! does, but with

different initial conditions, namely
PLAPED Lt I DU D WAk (A.1.6)

as can be checked using (A.1.1) and (A.1.5), with Aj = 0 and X3 = 1 for n > 0.

Thus, we get the following values for AL

ny t 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0o 0 0 0
2 1 1 0 0 0 0 0 0
3 1 3 1 0 0 0 0 0
4 1 8 5 1 0 0 0 0
5 1 22 19 7 1 0 0 0
6 1 64 67 34 9 1 0 0
7 1 196 232 144 53 11 1 0

Values of L, calculated using (A.1.4), are given in the table below:

n}345678

2
Ln 1 5 17 51 149 443 1362
0 1.61 2.83 3.93 500 6.09 7.22

Based on these numbers, it seems that L, grows exponentially with n, or with
the total number of points in the lattice.

" Let us try to estimate the asymptotic behavior of L, for large n using a
different approach. We will first replace the recursion relation (A.1.1}, by a

differential equation for a function /(n,y), and we will try to obtain information
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about the asymptotic behavior of /i as n — oo from that of I(n,y) as n — oo,

for fixed y. We rewrite (A.1.1) as

_312—1 - (l;—l - l:z) = 11;111 - 25;—1 + 3:;11, (A.1.7)
and replace it by
ol 1 3%

or

2 2
_3l+ﬂ+lal —ﬂ

Solutions to this equation can be found by the method of separation of variables:

if we set 5 = N(n)I(y), then the usual procedure gives

1 83N 108N 18%I

-3+ — — = = A.1.10

toN o TN Bn T Iay® (4.1.10)
or, introducing an arbitrary separation constant «,
N(n) = Ae**" + Bet-"

(A.1.11)

Hy)=C evVey + D e_‘/ay,

where A, B, C and D are arbitrary constants, and £+ := —1 £ /7 + 2&. There-

fore, the general solution of the differential equation is

I(n,y) = /oodoc (A(a)ef““” + B(a)ef‘"’) (C(a)e‘/ay + D(a)e_\/ay) (A.1.12)

—C0

where the arbitrary functions 4, B, C and D depend on the imposed boundary
conditions. The latter we would like to be equivalent to the ones specified above

for Ii: I{(n=0,y)} = 0 for y > 0, and I(n,y=0) = 0, unless n ~ 1.
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What can we say now about the total number of mulitloops, M,,, contained
in a lattice of n steps? We can certainly put an upper bound on M, by counting
all possible combinations of used and unused diamonds: we thus get M, < 2N —
o(n+1)(n+2)/2 The overcounting consists in the fact that this will include all
multiloops in which loops are allowed to touch each other at the corners and
have arbitrary shapes (i.e., they need not be formed by two timelike paths joined
at their ends). In fact, the multiloops we count in this way are the ones used in
the Ising model calculations mentioned in §3.3, and our upper bound on My is

(up to a coefficient) the partition function (3.3.5) for z = 1.
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A.2 An application of simulated annealing

A method called simulated annealing has recently been developed for extremiz-
ing functions of many variables (for references and a review of this and other
methods, see, e.g., Press, Flannery, Teukolsky and Vetterling [82], in particular
§10.9). Usually, in the applications of simulated annealing, the variables can have
only discrete values, but I will summarize the method without this restriction,
Indicating the function to be minimized by f(g1,4q2,.--, gn), by a configuration
of the system I will denote a set of values for (q1,¢z,--- ,gN) = ¢, and [ will
be called an energy function, since it will play a role analogous to that of the

potential energy of a physical system.

We sta.rt ‘with an arbitrarily chosen configuration g(;) for the system and cal-
culate its energy f (qm). Although some insight can go into the choice of the
initial configuration, the latter could be very far from the one that minimizes f.
We thus want to let the system “evolve” by generating a series of new configu-
rations, trying to ensure that they get us closer and closer to the minimum. To
check that they do is however a difficult problem, since f in general may have
many local minima, and the fact that in one reconfiguration the value of f is low-
ered does not imply that this reconfiguration brings us closer to the minimum.
To avoid getting stuck in local minima, we want to allow ourselves to occasion-
ally make reconfigurations that increase the value of f, with a probability which
depends on how close to the true minimum we think we are. This is achieved by
imagining the system to have a temperature 7', which superimposes a random
thermal fluctuation to its evolution towards a minimum of the energy. We thus
proceed as follows.

Choose a value for the temperature T. Given any configuration g(;), we
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randomly generate a new one, ¢—exactly how we do this, i.e., what we mean
by “randomly”, depends on the problem at hand, but we will see an example
shortly—, and calculate the energy difference Af = f(§) — f (q(,-)). fAf<DO
we accept the reconfiguration, and we set g(i+1) = ¢, otherwise we do so with
probability e~4/ T, Repeat this procedure for producing new configurations,
either a fixed number of times, or until the value of f for many iteratibns changes
so little between one configuration and the next, that we interpret the changes
as being due to “thermal fluctuations”, which prevent the system from settling
down to the minimum. Then lower T (normally by a fixed fraction), and again
repeat the procedure. Lowering the temperature is what the annealing process
consists in, and the success of .the run may strongly depend on the way in which
it is done. Ideally, when or before T' = 0, the configuration of the system should

be the true minimum of f.

QOur problem was that of trying to embed a given causal set P of size N in
a Minkowski space of a given dimensionality n. It can be cast into the form of
a minimization problem if we give a function f which we interpret, for each set
of positions of N points in n-dimensional Minkowski space, as the “badness” of
the agreement between the causal relations induced on these points and those
defining P. Thus, the energy is the sum over all pairs of points of a quantity
which is zero if the points are correctly related, and otherwise depends on the
distance they have to be displaced by to become correctly related. The good
configurations are not a set of zero measure in the set of all configurations, and
they are distinguished by the vanishing of the energy. This has the advantage
that a good configuration is immediately recognized when it is reached, and the

program does not need to keep running, e.g., until 7' = 0, as in the general case.
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The programT

The points in n-dimensional Minkowski space from which we want to obtain
a realization of P = {p;} are represented as spheres, the intersection of a t =
const hyperplane with the pést light cones of the points (see lemma 1), with
radius R; and center at zf. Thus, in a causal embedding of P, p; < py iff
—(R, — R + z;% (:z:‘J1 — z%)? < 0 and R; < R;. The solution we have given
to the problem of the choice of energy and reconfiguration algorithm can be
best understood if we start from the latter. Once the program decides whether
a particular sphere is to be moved in a reconfiguration (this happens with a
probability depending on how correctly it is related to the others, which actually
makes ours a “biased annealing”, not really thermal), the position of the sphere
is changed from the current one by a normally distributed displacement in a
uniformly random directién in space, and the radius is changed to a new value,
normally distributed around the current one. The displacement of the sphere
looks therefore like a random displacement in n-dimensional Euclidean space,
and the contribution to the energy due to a pair of points has been chosen,
accordingly, to be proportional to the minimum euclidean distance one of them
has to move in this space in order to be correctly related to the other. More
details can be found by looking at the listing of the program, below.

A more satisfactory choice of displacements and energy would use in a more
direct way the lorentzian nature of the Minkowski metric, and an improved ver-
sion of the program will be written, taking this fact into account. The present
version of the program finds correct embeddings of simple causal sets, like the

DM

embedding of the six-element crown Pg = Py in 3 dimensions, but does not

converge to a correct embedding for more complicated causal sets.

t Written in collaboration with D. Meyer.
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Listing of the source code {written in Pascal)

program cones{input,output);

const

maxN = 20; maxdim = 10;
type :

pmatrix = array(l..2,1..100] of real;
var

name: packed array[l..12]} of char;

infile, outfile: text;

i, 3, zij, dim, N, count, Ndata, gliy: integer;
seed: integer:= 1959; gliset, totalcount: integer:= 0;
glir: array[l..97] of integer;

change: array[l..maxN] of boolean;

z: array[l..maxN,1l,.maxN} of boolean;

Xnew, Xold: array[l..maxN,1l..maxdim] of real:= zero;
Rnew, Rold: array[l..maxN] of real:= zero;

E: array[1..100) of real:= zero;

Enew, Ecld: array[l..maxN,1l,.maxN] of real:= zeroc;

149

deltaE, Rave, R, Rmin, T, Eave, Evar, spheat, glgset: real;

data: pmatrix;
$include 'rand.pas’
procedure energy;

const
roottwo = sqrt(2);

var .
Rij, Xij, s2: real;
i, j, k: integer;
begin
gdeltaE:= 0;
for i:=1 %o N-1 do
for j:=i+l to N do
if changsl{il or change[j] then begin
Rij:= Rnewlil-Rnewl{ijl;
Xij:= 0;
for k:=1 to dim do Xij:=Xij+(Xnew| i, k]l-Xnewi{j,k])**2;
s82:= —(Rij**2)+Xij;
Xij:= sgrt(Xij);
if =2z{i,j)] then , :
if £25>0 then Enew([i,jl:=(Xij+Rij)/(roottwo*Rave)
else
if Ri9>0 then Enewl[i,jl:=sgri(s2+2%(Ri j**2))/Rave
else Enewl[i,jl:= 0
else
if s2>0 then Enew([i,di]l:= 0
elge Enewli,j):= (abs{Rij)- XIJ)/(T nttwo*Rave);
deltaf:= deltat+inewli,ji~Solidlz, ]
end

end; { energy }



A.2 An application of simulated annealing 150

procedure reconfigure;
var
i, k: integer;
Efraction, norm: real;
displacement: array[1l..maxdim+1] of real;
begin
Rave:= R;
for i:=1 to N do begin
Efraction:= 2*Eocld[i,i}/El1l];
if ran2(seed)<Efractzon then changel[i]:= true;
repeat
repeat
norm:= 0;
for k:=1 to dim+l do begin
dlsplacement{k} = 2*ran2{seed)-1
norm:= norm+displacement[k]**2
end
until norm<l;
norm:= FEold[i,i]*R*gasdev(seed)/sgrt{norm);
for k =1 to dim do
Xnewl[i,k):= Xoldii, kl+displacement[k]*norm;
Rnew{il:= Rold[l]+dlsplacement[d1m+l]*norm
until Rnew([i])>0;
Rave:= Rave+(Rnew[1]—Rold[i])/N
end
end; { reconfigure ]

procedure update;

var
i, j, k: integer;
begin
For i:=100 downto 2 do E[il:= E[i-1];
Elli:= 0;
Rmin:= Rnew[1l];

for i:=1 to N do be

if Rnewl[il<RBmin ¢ 1 R
if change{i] then begin

for ke=1 to dim do Xoldl[i,k]:= Xnew[il,k};

Rold[i]:= Rnew[i]
end;
for j:=i+1 to N do

if change[i] or change[j! then Eold[i,jl:= Enew[i,]I;
Eoldil,-j:= 0;
for j:=1 to i-1 do Eeld[i
for j:=i+l1 to N do Eold{z
E[1]:= E[1]+E0ldii,i]

gi
=
12y
ne

3 :J

1in:= Bnewl[i];

':3

-

Eoldi{i,ij+E0ld[j,i]/2;
Eoldli,i)+Eo0ld[i,31/2;

P I-'
—
[

end;

for i:=1 to N do begin
for k:=1 to dim do Xeld[i,kl:= Zoldli , ki/Rmin;
Rold[i]l:= Rold{i]/Rmin

end;

Rave:= Rave/Rmin;

R:= Rave

end; { uvpdate }
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procedure statistics;

var
i: integer;
E2: real;
begin
Eave:= (;
E2:= 0;

for i:=1 to 100 do begin
Eave:= Eave+E[i];
E2:= E2+E[1])**2
end;
Eave:= Eave/100;
E2:= E2/100;
Evar:= sqrt{(E2-(Eave**2)};
if totalcount=0 then T:= 100;
if T>0 then spheat:= (Evar/T)**2;
totalcount:= totalcount+100
end; { statistics ]

It

procedure startup;
begin
write{'Input data file: ")
readln(name};
open(infile,name,old);
reset(infile);
open{outfile,’cone.out’);
rewrite{outfile);
readin(infile,N};
for i:=1 to N-1 do
for j:=i+l to N do begin
read{infile,zij);
if zij=0 then z[i,j]:= false
gelse
if zig=1 then z[i,]j):= true
else writeln('wrong data in input file')

end;
write{'how many space dimensions? ');
readin(dim);
for i:=1 to N do begin
change{i]:= true;
for j:=1 to dim do Xnew{i,jl:= 0;
Ruew[i]l:= 1+1
end;
Rave:= (N+4}/2;
eneragy;
update;
writeln(’Energy of initial configuration fLE[LT:9)
writeln{outfile,
rEnergy of initial configuration: E[1]:9)
end; { startup }
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procedure warmup;
begin
count:= 0;
while (count<100) and (E[1]>0) do begin
reconfigure;
energy;
update;
count:= count+l;
writein{count)
end;
statistics;
writeln(’ r,
'Count Tenmp. E[1]. Eave. Evar. spheat’);
writeln({’ i

fwarmup —--——--— ',E[l]:8,Eave:8,Evar:8,spheat:8);
writeln(outfile,’ ",

'Count Temp . E{l]. Eave. Evar. spheat’);
writeln(outfile,’ r,

fwarmup ———---—- ',E[l}:B,Eave:B,Evar:B,spheat:B);
write('waiting for <cr> ... ');
readln

end; { warmup }

procedure decide;

begln
if deltak<( then begin
update;
count:= count+l
end
else

if T>0 then
i1f ran2(seed)<d*exp(-deltaE/T) then begin
update;
count:= count+l
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Ndata:= Ndata+l;
datall,Ndata):= T;
data[2,Ndatal:= Eave;
write('v/t/n: ");
readln(continue);
if continue='t’ then begin
write{ 'new T: ');
readln(T);
continue:= 'y’
end;
if continuve=‘y’ then T:= T*0.9;
if Ndata=35 then continue:= n'
end
end; { anneal }

{ procedure prepareplot(Ndata: integer; data: pmatrix);
fortran; |}

procedure writeout({var where: text};
var
i, j, k: integer;
begin
writelin{where); _
writeln(where,'Incidence matrix:’);
writeln(where);
for i:=1 te N do begin
for j:=1 to N do write{where,’ ",2[1,31:1);
writeln{where)
end;
writein(where);
writeln(where, 'dimensions: r,dim:2);
writeln(where);
for i:=1 to N do begin

write(where,"i=",i:2,", =73
for k:=1 to dim do wrlte{where,’ r,Xoldf{i,kl:8);
writeln(where,', B=' ,Ro1d[11:8)

end;

writeln(whe:e},
writeln(where, Energ; matrixz:’);
writeln{where);
for i:=1 te N do begi

for j:=1 to N co write({where,’ ',Ecldli,ji:8);
writein{where)

writeln({where};
writeln{(where,'Total energy: LEILDY
end; [ writeout }

WETmUD;
anneal;

{ prepareplot(Nda
writeout{output)
writeout(outfile

end.
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Random number generators (from reference [82}).

FUNCTION ran2{VAR idum: integer):

(* Programs using RAN2 must declare the

VAR
gliy: 1integer;
glir: ARRAY [1..97]) OF integer;
in the main program. *)
CONST
m=714025; ia=1366; ic=150889;
rm=1.400512e-6; (* 1.0/m *)
VAR
j: integer;
BEGIN
IF {idum<0)} THEN BEGIN

idum:;={ic-idum} MOD m;

FOR j:=1 to 97 DO BEGIN
idum:=(ia*idum+ic) MOD m;
glir{j):=idum END;

idum:=(ia*idum+ic) MOD m;

gliy:=idum END;

1=14{97*gliy) DIV m;

F ((j»97) OR (j<1}) THEN BEGIN

[ R A

reail;

following variables

writeln(’pause in routine RAN2'); readln

END;
gliv:=glir(j}; ran2:=gliy*rm;
idum:=(ia*idum+ic) MOD m;
glir{jl:=idum
END;
FUNCTION cgasdev(VAR idum: integer)
(* Programs using GASDEV must
VAR

gliset: integer; glgset:
in the main routine &
gliset:=0; *)

: real;

-

e
declare the variables

VAR
fac,r,vl,v2;: real;
BEGIN
IF {gliset=0) -THEN BEGIN
REPEAT
vi:==2.0*ran2(idum)-1.0; v2:=2.0%ran2(idum)-1.0;
r:=sgr(vl)+sqgr(v2);
UNTIL (r<1.0});
fac:i=sgrt(-2.0%inlr)/r); gligset =vl=Zfa=;
gasdev:=v2*fac;
gliset:=1 END
ELSE BEGIN
gasdev:=glgset; gliset:=0 END
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Sample data file
The data file gives the number of elements in the causal set and the (upper
half of the) incidence matrix ¢;; (defined in §3.4). The example shown here is for

FaN
the causal set P 4}).

19
po0010002100110011111
o0010011000110¢111
p0o01op02xr1010121011
0 00100121201111101
0O 0000000000000
000000000000 O0
0 00000O00O0COCGO0CCO0OQO
0 0000C0OCGO0O0CD0O0
0 000000O0O00Q
0000CO0D0O0O0O0
0 c000C0CO
0o00D0O0C0CGO
000000
00000
086020
00 0C
00
8
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Other possibilities

An alternative to the simulated annealing method for minimizing functions
of many variables is the so—ﬁélled ALDPEX aigorithm (see Pandya, Unnikrishnan
and Harth [81]). This method also uses the noise produced by an effective tem-
perature to overcome the local minima problem, but one does not first generate
a configuration and then decide whether to accept it or not. Rather, at each
reconfiguration, each variable is changed in a direction which has a higher prob-
ability of being in the same direction as the one of previous change, if this led
to a decrease in f, and of being in the opposite direction otherwise, the exact
probability depending on the temperature. In a simple case, each parameter can

change from its value g;,y) in the N-th configuration to

Gin+1) = Gy T 8(N) = gy £ 6 (4.2.1)

in the (N +1)-th, for some constant §. The probability that 6;(N) = +6 is

1

P(N) = 1 < e-AAN)/T?

(A.2.2)
where A;(N) = [f(gv)) — Flav—1)l laivy — @v-1)), and, clearly, P=(N) =
1— P(N).

Finally, a third minimization method which is useful sometimes is that of
imagining the system to be subject to a force, which makes it move toward the
equilibrium configuration (and subject also to an implicit additional damping,

since we don’t want to set it into an oscillatory motion).
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A..3 Sprinkling points in a given background

We have seen various instances, in previous chapters, of situations in which some-
thing could be learned about properties of causal sets faithfully embeddable in
some manifold with metric, from looking at the corresponding properties of a
large set of points sprinkled in this manifold with uniform density: statistical
properties from which fractal dimension is defined (§2.6), from which scalar cur-
vature can be estimated (§2.7), or from which definitions of the action can be
evaluated (§3.3). Here, I will briefly describe the algorithms suitable for produc-
ing with a computer those random sprinklings, for simple cases of space-times.
As a starting point, I assume we have available a generator of “_mndom”
numbers uﬁiformly distributed between 0 and 1, like the function RAN2 used
in the program listed in appendix 2, and that we want to generate randomly

distributed points in a region § of a space-time (M, gas)-

The genéral procedure will be this. Suppose we can choose a set of coordinates

zH such that the volume element can be factored into the form
n—1
4"V = v/—gd"z = | [ fu(=*)dz*, (4.3.1)
p=0

where f( ) (z*) is a function of one coordinate z* only. Suppose in addition that
the region S of interest can be specified by giving separate ranges z# € [a("), b(“)]
for all the coordinates (think of the ¢’s and b’s as constants for now, although
we will need a slightly more general case in a while]. These metrics are not of
the most general kind, but they are the ones I will restrict my attention to, while
the condition on § is just for simplicity of discussion: in many cases it will be
satisfied; if not, we just need to enclose § in a bigger region which does satisfy

it, sprinkle points uniformly there, and ignore the ones that fall outside §.
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Then a uniform sprinkling in $ is obtained by generating, for each u, the
coordinate z* of each point according to the probability distribution f(,) (z*).

So now the problem is reduced to that of how to generate a variable z €
[a,b] with a known distribution f. This problem has several solutions (see, e.g.,
Press, Flannery, Teukolsky and Vetterl;lng [82], esp. §7.2), the most general one,
and sometimes a quite inefficient one, being the Monte Carlo method. But let
me assume here that we are lucky and that the function f is integrable, and
its primitive f : fdz' =: F(z) is analytically invertible. Then, we just have to
generate a (uniformly) random number { between O and F(b), calculate z =
F~1{#), and this = will have probability distribution f.

We can now see some applications, in which § will be an Alexandrov neigh-

borhood A(z,v)-

2-dimensional Minkowski space
This first example is trivial, since for any Alexandrov neighborhood in 2-
dimensional Minkowski space there are null coordinates v and v such that the

metric and the Alexandrov neighborhood are expressed as
g 1
—ds* = Edu dv, and uw €[0!, vel0d]. (A.3.2)

This obviously satisfies our assumptions, but all we need to do is to generate both
v and v uniformly from 0 to [. It is identical to generating points in a rectangular

cartesian box (which, by the way, is how figure (2.5.1) was generated).

n-dimensional Minkowski space
Here generating pb'mts in a cartesian box is just as trivial as in 2 dimensions,
but for § = A(z,y) we have to use the procedure outlined above. Thinking

of A{z,y) as two base-to-base cones with base an (n—1)-ball of radius //2 and
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height [/2, we choose as coordinates t, r and the angles on an (n — 2)-sphere

61,602 ..., 6(*=2) in terms of which the metric and A(z,y) are given by

ds® = —dt* + ridn2_,
= —dt? + dr? + 1% { (d8D)? + sin? 60 [(d8®)? 4 sin? 93) (.. )]}
tel=i/2,+1/2);  relo,l/2—|t]];

8% ¢ [0,7] for ¢=1,...,n—3; (=2 ¢ [0, 2], (A.3.3)
where d0? is the line element on the unit n-sphere S™, Themn,
V=g =r""2sin® 290 sin" 4 ¢®) . sing(»3) (A.3.4)

and it is straightforward to find an algorithm for generating each coordinate
with the corresponding probability distribution. In the case of Minkowski space,
it is much simpler to use cartesian coordinates and generate points in a larger
rectangular box, and later throw away all points that fall outside the Alexandrov
neighborhood, although for high dimensionalities this might require a greater
amount of computer time. Therefore, I will not give explicitly the form of the

Fi (1) ’s for spherical coordinates.

de Sitter space-time
In (3 + 1)-dimensional de Sitter space-time, the space we can use when we
need to do calculations in the presence of a constant positive curvature, the metric

in the proper time gauge is given by {see, e.g., Hawking and Ellis [48])

ds? = —dr® + -f%cosh2 (\/gr) di. (A.3.5)

Since d12 = dx? +sin® x d8? + sin® x sin® 6 d¢?,

3\%? A
- :(X) cosh® \/;f siny sin 6, (A.3.6)
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and, to generate points randomly, we use the fact that

I
fsinxd:a:r-—-cosa: /sinzxdm=-§-——zsin2x
1
/cosh3 rdr =sinhz + 3 sinh® z. (A.3.7)
‘Alternatively, we could use the metric in the form
ds? = —df? + 2VA3(dz? + di? + d3?), (A.3.8)

depending on which coordinates are more convenient for defining an Alexandrov
neighborhood, or we could use the fact that de Sitter space is the hyperboloid
—v? b w? bty 2t = 3/A in IR®, to sprinkle points randomly in a thickened
hyperboloid (between A and A + AA) in this space, and then project the points
onto the desired hyperboloid.
Other space-times

I will just mention two other kinds of metric in which we could in principle
sprinkle points uniformly with the method described. In (3 + 1)-dimensional
anti-de Sitter space-time (the hyperboloid —u? — v? + 2z + 3% + 22 = 1 in R®),
our model for a constant negative curvature space, the metric can be given in

the forms

ds? = —dt® + cos’ ¢ [dx® + sin® x (d6? + sin® 6 d¢?)]

= cosh® r dt'? + dr? + sinh® r (d6? + sin® ¢ d¢?). (4.3.9)

Finally, a class of space-times for which the method applies, and in which physi-
cally it might be of some interest to sprinkle points is that of Robertson-Walker

space-times.
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