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Abstract

This document describes a scheme under development for photon finding and cluster split-
ting using a χ2 fit to incident four-momentum by performing a quasi-analytic integration of a
shower shape parameterization in the CsI in three dimensions over the crystal volume.
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1 Introduction

This note details a scheme under development for cluster splitting of π0’s and to improve position
resolution for photons. It performs a χ2 fit to incident four-momentum and involves performing a
quasi-analytic integration of a shower shape parameterization in the CsI in three dimensions over
each crystal volume. The scheme allows for a fit to the shower location and energy; transverse and
longitudinal scale parameters; and allows for showers that originate away from the interaction point
(e.g. for use in K short reconstruction).

2 The XT Fitter Class

The XT Fitter class provides the interfaces for fitting to single photons, composite π0’s or π0’s
merged to one or two bumps. It makes initial guesses for the kinematic parameters and performs
the χ2 fit. Each XT Fitter object performs a minimization of the function:

χ2(ξ[n]) =
∑
m

E[m] −
(∑

n
∆Enm

)
σE[m]
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(1)

where E[m] is the digi energy in crystal m, and ∆Enm is the calculated energy that would be
deposited in crystal m by the nth photon cascade if we assume the cascade is well described by the
parameter set:

ξ[n] =
{
E0[n], θt[n], φt[n], x0[n], y0[n], z0[n], W[n], λr[n]

}
(2)

where:

• E0[n] is the hypothesis for incident energy of the nth gamma

• x0[n], y0[n], and z0[n] give the hypothesis for first hard interaction point in the nth cascade

• θt[n] and φt[n] are the hyptheses for azimuth and polar angles of the nth gamma momentum
axis

• W[n] is a longitudinal shower scale parameter described below

• λr[n] is a transverse shower scale parameter described below.

The details of the evaluation of the χ2 function are discussed below.

2.1 The interface for XT Fitter

For a single photon:

XT Fitter the XT Fitter(EmcCluster ∗ theCluster);

Successfully reconstructed photons are flagged by a Boolean:
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the XT Fitter.valid photon

To split a two bump cluster, as for π0’s merged to two bumps:

XT Fitter the XT Fitter(map〈TwoCoordIndex∗, EmcBump∗,
BbrP trLess〉&theIndexedBumps);

Successfully reconstructed π0’s are flagged by a Boolean:

the XT Fitter.valid P i0

and the energy (in MeV) and position of the two photons are given by:

the XT Fitter.Photon E[0];
the XT Fitter.Photon E[1];
the XT Fitter.Photon pos[0];
the XT Fitter.Photon pos[1];

And the interface for one π0’s merged to one bump is:

XT Fitter the XT Fitter(map〈TwoCoordIndex∗, EmcBump∗,
BbrP trLess〉&theIndexedBumps, bool& split Single);

Figure 1: The π0 mass peak for merged π0 two bumps in B → π0π0 Monte Carlo. In yellow is the result
for this reconstruction algorithm, the tick marks give the mass as determined from production code.
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Figure 2: The π0 mass peak for π0 merged to one bump in B → π0π0 Monte Carlo. In blue the result
this reconstruction algorithm, the tick marks give the mass as determined from second moment analysis
(the current production splitter does not split single bumps).

3 The Shower Shape Parameterization

The parameterization of the shower corresponds approximately to that of del Peso and Ros [2] as
implemented in ASLUND for the BABAR EMC by D. Bernard[3].

To integrate the deposited energy, we assume cylindrical symmetry of the showers and integrate:

dEdep = E0 fz(z) fr(r)
1
2π

dφdzdr (3)

The longitudinal shape is the standard one:

fz(z) =
β (βz)α−1 e−βz

Γ (α)
(4)

and the transverse shower shape is given by:

fr(r) =

(√
r
λr

)αr−2

e
−
√

r
λr

2λrΓ (αr)
(5)

.
Here αr is linear in longitudinal depth z:

αr = α0r + α/
rz (6)

so α0r, α/
r , and αr determine the lateral shower shape. In order to facilitate integration, the

del Peso and Ros form for transverse shower shape is modeled by a sum of three terms of the
Grindhammer type.
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fr(r) =
ε12rR

2
1

(r2 + R2
1)

2 +
ε22rR

2
2

(r2 + R2
2)

2 +
(1− ε1 − ε2) 2rR2

3

(r2 + R2
3)

2 =
∑

l

ε
l
2rR2

l

(r2 + R2
l )

2 (7)

The values for Rl and εl are determined from fitted polynomials functions of αr and λr which
match the del Peso and Ros form of note #476 as closely as possible.

Figure 3: Transverse Energy Distribution of Del Peso (Pink) and Approximation by Grindhammer Sum
(Blue).

Figure 3 shows the del Peso transverse distribution in pink and the Grindhammer sum approx-
imation in blue for a particular choice of shower energy and depth.

As implemented for BABAR, the product V = αβ and parameters α0r and α/
r are fixed to their

average values as a function of logE0. W is the ratio W = α/β where α and β are the parameters
used in fz(z). In a calorimeter with longitudinal segmentation it would be desirable to fit to W at
fixed V. In applying this method to BABAR, we fix W at its average value.

With longitudinal segmentation the choice of W as a fitting parameter would be motivated by
the fact that the longitudinal shower profile depends strongly on the ratio α/β when the product αβ
is held constant, but depends weakly on the product when the ratio is fixed. Figure 4 is reproduced
from BaBar note #476. In the lower left fz(z) is plotted for different values of the product V while
the ratio W is held constant. In the lower right fz(z) is plotted for different values of the ratio while
the product is held constant.

4 The Xtl Con, FP Set and Xtl Increment Classes

Three classes have been developed to perform the 3-D integration of the shower shape over the
crystal volume: the Xtl Con, FP Set, and Xtl Increment classes. There is one FP Set object for
every cascade and one Xtl Con object for every affected crystal. The FP Set class contains the fitting
parameters set ξ[n] for one cascade and various quantities derived from them. Xtl Con contains
geometrical information about the individual crystal and performs the summation of crystal energy
over all cascades. Xtl Increment contains the calculated contribution to energy in one crystal due

6



Figure 4: Figure take from BABAR note # 476. Longitudinal energy profiles are shown for various choices
of α and β. In the upper left the profiles for three different choices of α are shown for the same choice
of β. At the upper right, the profiles for three values of β at fixed α. At the lower left three profiles are
shown for different values of the product V = αβ while the ratio W = α/β

is fixed. At the lower right three profiles are given for different W values for fixed V.

to one cascade, i.e. the contribution to one Xtl Con object due to one FP Set object; it is the class
which integrates the incremental contribution to the energy in a given crystal when passed a pointer
to an object of type FP Set.

4.1 The Xtl Increment Class Integration of Crystal Energy

The Xtl Increment class provides the approximate 3-D integral of the energy shape parameterization
over the trapezoidal volume of a CsI crystal in the BaBar EMC. The 3-D integral is approximated
by summing over contributions from various layers of depth within the crystal. The position and
direction at impact on the crystal face are projected as a ray through the crystal of incidence.
Planes perpendicular to this ray are defined at regular intervals in shower depth z as shown in
figure Figure 5. The intersection of these planes with the outline of the crystal (as extracted from
the EmcXTal::PhysicalOutline routine and stored in Xtl Con) are determined and the contribution
from each slice is given by:

∆E[mn] =

∑
i

dedx[in] ×
∑
lj

Trans[ijlmn]

× E0[n] (8)

where Trans[ijlmn] is defined as the fraction of the energy in the ith plane of cascade n that is
contributed by th lth term in the Grindhammer expansion to crystal m by integrating over a triangle
defined by three vertices at:
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Figure 5: The 3-D integration sums over slices transverse to the projected trajectory.

a) the point where the nth photon trajectory crosses the ith plane of shower n;
b) the point of the intersection of plane i of shower n with the jth edge of the crystal m;
c) the point of intersection between the plane i and the j+1st edge of the crystal m.

The definition of dEdx[in] is the longitudinal weight for the slice i of cascade n:

dEdx[in] =

(
β[n]zi

)α[n]−1
e−β[n]zi∑

j

(
β[n]zj

)α[n]−1
e−β[n]zj

(9)

with zi being the depth beyond the shower origin of the ith slice in radiation lengths as calculated
in FP Set.

The integration over a transverse cross sectional slice through the crystal of incidence is ac-
complished by dividing the slice into triangles. Figure 6a) represents one such cross sectional slice
(viewed from the I.P.), the dot represents the projection of the incident particle trajectory through
this slice. The grey shading suggests the transverse energy deposition profile in that slice. Figure
6b) shows the four triangles over which the transverse energy distribution function fr (r) need to be
integrated and summed over to obtain the value Trans[ijlmn] for this slice. To perform the integra-
tion of the transverse profile over a neighboring crystal instead, there would be some combination of
integrals over four triangles, some added and some subtracted to form Trans[ijlmn] as in 6c). Each
of the four triangles can be rendered as the sum or difference of two right triangles as in figure 6d)
and 6e).

This is done because the Grindhammer form can be integrated over an arbitrary right triangle
with a corner at the origin as in Figure 7:

I(a, b) =
∫ arctan β

φ=0

∫ a/ cos φ

r=0

2rR2

(r2 + R2)2drdφ (10)
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Figure 6:
The analytic integration of the transverse Grindhammer shape is performed over right triangles as described
in the text.

Figure 7: The integration variables.

which evaluates to:

I(a, b) =
a

2π
√

a2 + R2
tan−1

 b√
(a2 + R2)

 (11)

The integral over each of the four component triangles is calculated as the difference of two right
triangles:

Trans
ij

= I(hij, k1ij)− I(hij, k2ij) (12)

I(a,b) is an odd function of both arguments so that Trans has the same form whether the
two right triangles should be added or one subtracted from the other, and whether the projected
trajectory traverses this crystal or a neighbor, provided the quantities h, k1, and k2 are properly
signed. The full procedure for determining h, k1, and k2 is described below.
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4.2 Minimization of Chi-Squared and its Derivatives in XT Fitter:

Minimization of:

χ2 =
∑
m


E[m] −

(∑
n

[(∑
i

dedx[in] ×
∑
lj

Trans[inmlj]

)]
× E0[n]

)
σ2

E[m]


2

(13)

with:

σ2
E[n]

= A + BE[n] (14)

is accomplished using the a fitting procedure of the non-linear least-squares type due to Marquardt
[1]. The initial guesses for the fitting parameters come from the current production splitter in the
case of single photons,

In the case of composite π0’s, or π0’s merged to two bumps:

• InitialE0[n], x0[n], y0[n], and z0[n] values are derived from the cluster energy and centroid.

• θt[n] and φt[n] are constrained by the ray from the I.P to
(
x0[n], y0[n], z0[n]

)
.

• W[n] is constrained to its average value as a function of lnE0[n].

• λr[n] initial value is its average value as a function of lnE0[n].

In the case of the π0’s merged to one bump, XT Fitter finds an axis along which to split the
bump via a scheme using a cluster shape calculation. We minimize:

∂

∂α

[∑
i

(~ri • ~α)2E2
i

]
= 0 (15)

where

~ri = ~xi − 〈~x〉 (16)

is the displacement vector from the shower centroid to the center of the ith crystal, as in figure
8. If we evaluate the dot product with respect to local coordinates with axes corresponding roughly
to the crystal theta and phi edges:

∑
i

2E2
i (rix cos α + riy sin α) (−rix sin α + riy cos α) = 0 (17)

or:

α = 1
2
arctan

 2
∑
i

E2
i rixriy∑

i
E2

i

(
r2
iy − r2

ix

)
 (18)
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Figure 8: A cluster shape calculation as described in the text finds the axis for splitting the π0 merged to
one bump.

A Detailed Calculations

A.1 Explicit Calculations for the FP Set Class

a) Find the E dependent Longitudinal Parameters

V = 10S(log10 E0) (19)

where:

s (log10 E0) = 2.868129− 5.256339 ∗ log10E0+3.151632∗ (log10E0)
2

−.769710∗ (log10E0)
3 +.068684∗ (log10E0)

4 (20)

the derivative is:

dV

dE0[n]

=
V

E0[n]

× s′
(
log10 E0[n]

)
(21)

with:

s′ (log10 E0) = −5.256339 + 6.303264 ∗ log10E0−2.30913∗ (log10E0)
2 +.274736∗ (log10E0)

3 (22)

W̄ = 〈αβ〉 = 10M(log10 E0) (23)
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where:

M (log10 E0) = −1.936314 + 2.340665 ∗ log10E0−.712555∗ (log10E0)
2 +.076661∗ (log10E0)

3 (24)

and:

dW̄

dE0

=
W̄

E0

×M ′(log10 E0) (25)

with
M ′ (log10 E0) = 2.340665− 1.42511 ∗ log10E0+.229983∗ (log10E0)

2 (26)

Then find alpha and beta and their derivatives with respect to V and W:

α[n] =
√

V[n]W[n]

β[n] =
√

V[n]

W[n]

(27)

∂α[n]

∂W[n]
=

V[n]

2α[n]
∂β[n]

∂W[n]
=

−β[n]

2W[n]
∂α[n]

∂V[n]
=

W[n]

2α[n]
∂β[n]

∂V[n]
= 1

2W[n]β[n]

(28)

b) Calculate the Plane Depths in Radiation Lengths:

zi = i× nx0

nplanes

(29)

nplanes is the total number of planes and nx0 is the total number of radiation lengths in a typical
crystal.

c) Calculate dedx for Planes i (and Derivatives):

dEdx[in] =

(
β[n]zi

)α[n]−1
e−β[n]zi∑

j

(
β[n]zj

)α[n]−1
e−β[n]zj

(30)

and calculate:

∂(dEdx[in])
∂α

= dEdx[in]

ln βzi −

∑
j

ln βzj(βzj)
α−1e−βzj∑

j

(βzj)
α−1e−βzj


∂(dEdx[in])

∂β
= dEdx[in]


∑
j

zj(βzj)
α−1e−βzj∑

j

(βzj)
α−1e−βzj

− zi

 (31)

and:

∂(dEdx[in])
∂E0[n]

=
(

∂(dEdx[in])
∂α

∂α
∂V

+
∂(dEdx[in])

∂β
∂β
∂V

)
dV

dE0[n]

+
(

∂(dEdx[in])
∂α

∂α
∂W[n]

+
∂(dEdx[in])

∂β
∂β

∂W[n]

)
dW̄[n]

dE0[n]

(32)
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∂
(
dEdx[in]

)
∂W[n]

=

∂
(
dEdx[in]

)
∂α

∂α

∂W[n]

+
∂
(
dEdx[in]

)
∂β

∂β

∂W[n]

 (33)

d) Find Z Dependent Transverse Parameters:

α0[n]

(
log10E0[n]

)
= 9.102926− 7.784449 ∗ log10E0[n]+

2.241959∗
(
log10E0[n]

)2
−.207938∗

(
log10E0[n]

)3 (34)

α′
0[n]

(
log10E0[n]

)
= −7.784449 + 4.483918 ∗ log10E0[n]

−.623814∗
(
log10E0[n]

)2 (35)

Φ[n] = 10−ρ(log10 E0[n]) (36)

where:

ρ[n]

(
log10E0[n]

)
= −(.510346−.523482 ∗ log10E0[n]+.293631∗

(
log10E0[n]

)2

−.070018∗
(
log10E0[n]

)3
+.006082∗

(
log10E0[n]

)4
)

(37)

Also:

dΦ[n]

dE0[n]

=
Φ[n]ρ

′
[n]

(
log10 E0[n]

)
E0[n]

(38)

with:

ρ′[n]

(
log10E0[n]

)
=.523482− 2× .293631∗

(
log10E0[n]

)
+3× .070018∗

(
log10E0[n]

)2
−4× .006082∗

(
log10E0[n]

)3 (39)

next get:

a[n] = α[n]

(
α[n] + 1

)
− Φ[n]α

2
[n] (40)

and:
∂an

∂E0[n]

=
(
2α[n](1− Φ[n]) + 1

)(∂α[n]

∂V[n]

dV[n]

dE0[n]

+
∂α[n]

∂W[n]

dW̄[n]

dE0[n]

)
− α2 ∂Φ[n]

∂E0[n]

(41)

and:

b∗[n] =
(
α0[n] +

1
2

)
α[n] − α0[n]α[n]Φ[n] (42)

with:

∂b∗
[n]

∂E0[n]
=
(
α0[n](1− Φ[n]) + 1/2

) (
∂α[n]

∂V[n]

dV[n]

dE0[n]
+

∂α[n]

∂W[n]

dW̄[n]

dE0[n]

)
− α[n](1− Φ[n])

∂α0[n]

∂E0[n]

−α[n]α0[n]
∂Φ[n]

∂E0[n]

(43)

and:
∂b∗[n]

∂W[n]

=
(
α0[n](1− Φ[n]) + 1/2

)( ∂α[n]

∂W[n]

)
(44)
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c[n] = α0[n](α0[n] + 1)− Φ[n]α
2
0[n] (45)

and:
∂c[n]

∂E0[n]
=
(
2α0[n](1− Φ[n]) + 1

) (
∂α[n]

∂V[n]

dV[n]

dE0[n]
+

∂α[n]

∂W[n]

dW̄[n]

dE0[n]

)
−α2

0[n]

∂Φ[n]

∂E0[n]

(46)

∂c[n]

∂W[n]

=
(
2α0[n](1− Φ[n]) + 1

)( ∂α[n]

∂W[n]

)
(47)

get:

α∗

[n]

{
1
2

} = β[n]

−b∗[n] ∓
√

b∗[n]
2 − a[n]c[n]

a[n]

 (48)

and:

∂α∗
[n]

∂W[n]
=

α∗
[n]

β[n]

∂β[n]

∂W[n]
−
(

α∗
[n]

a[n]
∓ β[n]c[n]

2a[n]

√
b∗
[n]

2−a[n]c[n]

)
∂a[n]

∂W[n]

−β[n]

a[n]

(
1±

b∗
[n]√

b′
[n]

2−a[n]c[n]

)
∂b∗

[n]

∂W[n]
± β[n]

2
√

b∗
[n]

2−a[n]c[n]

∂c[n]

∂W[n]

(49)

∂α∗
[n]

∂E0[n]
=

α∗
[n]

β[n]

(
∂β[n]

∂V[n]

dV[n]

dE0[n]
+

∂β[n]

∂W[n]

dW̄[n]

dE0[n]

)
−
(

α∗
[n]

a[n]
∓ β[n]c[n]

2a[n]

√
b∗
[n]

2−a[n]c[n]

)
∂a[n]

∂E0[n]

−β[n]

a[n]

(
1±

b∗
[n]√

b′
[n]

2−a[n]c[n]

)
∂b∗

[n]

∂E0[n]
± β[n]

2
√

b∗
[n]

2−a[n]c[n]

∂c[n]

∂E0[n]

(50)

from which we get:

αr[n] = α∗
[n]zi + α0[n] (51)

and then find R and i via:

αr ≤ 2.19
2.99 ≥ αr ≥ 2.19

αr ≥ 2.99

⇒


εl = εla

εl = εla + (αr − 2.19)× (εlb − εla) / (2.99− 2.19)
εl = εlb

(52)

αr ≤ 2.19
2.99 ≥ αr ≥ 2.19

αr ≥ 2.99

⇒


Rl = Rla

Rl = Rla + (αr − 2.19)× (Rlb −Rla) / (2.99− 2.19)
Rl = Rlb

(53)

where:

ε1a(αr) = −.004α3
r + .0156α2

r + .1655αr + .0223
ε2a(αr) = .0253α3

r − .2198α2
r + .5644αr − .0092

R1a(αr) = .1067α3
r − .1612α2

r + 3.396αr + 1.428
R2a(αr) = .0354α3

r + .0447α2
r + .6659αr + .234

R3a(αr) = .0206α3
r − .0574α2

r + .1322αr − .0142

(54)

and:
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ε1b(αr) = −.0114α3
r + .111α2

r − .1672αr + .3318
ε2b(αr) = .0026α3

r − .0464α2
r + .135αr + .3091

R1b(αr) = λr (.1268α3
r − .7988α2

r + 6.0648αr − 1.1216)
R2b(αr) = λr (.1416α3

r − 1.5713α2
r + 7.1756αr − 6.9898)

R3b(αr) = λr (−.2318α5
r + 3.6125α4

r − 22.514α3
r + 69.929α2

r − 107.46αr + 65.588)

(55)

αr ≤ 2.19
2.99 ≥ αr ≥ 2.19

αr ≥ 2.99

⇒


ε′l(αr) = ε′la(αr)

ε′l(αr) = ε′la(αr) + (αr−2.19)
(2.99−2.19)

(ε′lb(αr)− ε′la(αr)) + (εlb(αr)−εla(αr))
(2.99−2.19)

ε′l(αr) = ε′lb(αr)

(56)

αr ≤ 2.19
2.99 ≥ αr ≥ 2.19

αr ≥ 2.99

⇒


R′

l(αr) = R′
la(αr)

R′
l(αr) = R′

la(αr) + (αr−2.19)
(2.99−2.19)

(R′
lb(αr)−R′

la(αr)) + (Rlb(αr)−Rla(αr))
(2.99−2.19)

R′
l(αr) = R′

lb(αr)
(57)

ε′1a(αr) = −.012α2
r + .0312αr + .1655

ε′2a(αr) = .0759α2
r − .4396αr + .5644

R′
1a(αr) = λr(.3201α2

r − .3224αr + 3.396)
R′

2a(αr) = λr(.1062α2
r + .0894αr + .6659)

R′
3a(αr) = λr(.0618α2

r − .1148αr + .1322)

(58)

ε′1b(αr) = −.0342α2
r + .222αr − .1672

ε′2b(αr) = .0078α2
r − .0928αr + .135

R′
1b(αr) = λr(.3804α2

r − 1.5976αr + 6.0648)
R′

2b(αr) = λr(.4248α2
r − 3.1426αr + 7.1756)

R′
3b(αr) = λr(−1.159α4

r + 14.45α3
r − 67, 542α2

r + 139.858αr − 107.46)

(59)

ε3 = 1− ε1 − ε2
dε3

dαr
= 1− dε1

dαr
− dε2

dαr

(60)

e) Find the Trajectory Direction in Terms of Fitting Parameters

_

t [n] =


sin θt[n] cos φt[n]

sin θt[n] sin φt[n]

cos θt[n]


∂

_
t

∂θt
=


cos θt cos φt

cos θt sin φt

− sin θt


∂

_
t

∂φt
=


− sin θt sin φt

sin θt cos φt

0



(61)

A.2 Explicit Calculations for the Xtl Con Class

a) Extract the Crystal Outline
The normal vector for the jth edge of the mth crystal is given by by :

_
η [mj] =

~x2[mj] − ~x1[mj]∣∣∣~x2[mj] − ~x1[mj]

∣∣∣ (62)
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where X1[mj] is the innermost vertex of the jth edge of the mth crystal and X2[mj] is the outermost
vertex on the same edge. The outline of the crystal extracted from the EmcXTal::PhysicalOutline
routine gives a Hep3VectorD for each of the vertices of the crystal. Normal vectors which follows
the direction of each of the four projective edges of the crystal are determined.

b) Find Depth Independent Transverse Parameters:

~Ω[nmj] =

_
η [mj]

_

t [n] • _
η [mj]

(63)

Define the following:

~x[Ωjnm] = ~x1[mj] + ~Ω[nmj]

(
_

t [n] •
(
~x0[n] − ~x1[mj]

))
(64)

where:

~x0[n] =


x0[n]

y0[n]

z0[n]

 (65)

∂~x0

∂x0

=


1
0
0

 (66)

∂~x0

∂y0

=


0
1
0

 (67)

∂~x0

∂z0

=


0
0
1

 (68)

also define:

∂~v[Πjmn]

∂ξ[nq]
= ~Ω[nmj]

{
∂

_
t [n]

∂ξ[nq]
•
[(

~x0[n] − ~x1[mj]

)
− ~Ω[nmj]

(
_

t [n] •
(
~x0[n] − ~x1[mj]

))]
+

∂~x0[n]

∂ξ[nq]
•

_

t [n]

}
− ∂~x0[n]

∂ξ[nq]

~Π[nmjq] =

[
~Ω[nmj]

{
∂

_
t [n]

∂ξ[nq]
• ~Ω[nmj]

}
+

∂
_
t [n]

∂ξ[nq]

]
(69)

c) Loop over j and i Calculating Energy Contributions From Each Plane

~x[ijnm] is the intersection of the jth edge of the mth crystal with the ith slice along the trajectory
of the nth photon. These positions are represented by the vertices of the trapezoids in Figure 6.

~x[ijnm] = i∆ ~Ω[nmj] + ~x[Ωjnm] (70)

~v[ijnm] is the displacement between the intersection of the trajectory of the nth photon with the
ith slice along the the trajectory and the intersection of the jth edge of the mth crystal with the
same slice. Figure 6f) shows its orientation (as seen from the I.P.).
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~v[ijnm] = ~x[ijnm] − ~x0[n] − i∆
_

t [n] (71)

∂~v[ijmn]

∂ξ[nq]

=
∂~v[Πjmn]

∂ξ[nq]

− i∆~Π[nmjq] (72)

~r[ijmn] is defined by:

~r[ijmn] = ~v[ijmn] − ~v[i(j−1)nm] (73)

It’s geometric significance can be read from figure 6f).

∂~r[ijmn]

∂ξ[nq]

=
∂~v[ijmn]

∂ξ[nq]

−
∂~v[i(j−1)nm]

∂ξ[nq]

(74)

When each of the four triangles over which the transverse energy distribution must be integrated
for a slice is split into a sum or difference of two right triangles, the height of each of the two right
triangles is h[ijmn] and the bases of the right triangles are k1[ijmn] and k2[ijmn] respectively. Figure
6f) shows them in relation to the ith slice through the crystal.

h[ijmn] =
_

t [n] •
~v[ijmn] × ~v[i(j−1)nm]∣∣∣~r[ijnm]

∣∣∣ (75)

∂h[ijmn]

∂ξ[nq]
=

∂
_
t [n]

∂ξ[nq]
• ~v[ijmn]×~v[i(j−1)mn]

|~r[ijmn]| +
_
t [n]

|~r[ijmn]| •
[

∂~v[ijmn]

∂ξ[nq]
× ~v[i(j−1)mn] + ~v[ijmn] ×

∂~v[i(j−1)mn]

∂ξ[nq]

]
−(~v[ijmn]×~v[i(j−1)mn])

|~rij |
3/2

(
d~v[ijmn]

∂ξ[nq]
− d~v[i(j−1)mn]

∂ξ[nq]

) (
_

t [n] •
(
~v[ijmn] × ~v[i(j−1)mn]

)) (76)

k1[ijmn] =
~v

[ijmn]
• ~r

[ijmn]∣∣∣~r
[ijmn]

∣∣∣ (77)

∂k1[ijmn]

∂ξ[nq]

=

∂~v[ijmn]

∂ξ[nq]
• ~r[ijmn] + ~v[ijmn] •

∂~r[ijmn]

∂ξ[nq]∣∣∣~r[ijmn]

∣∣∣ − k1[ijmn]

~r[ijmn] •
∂~r[ijmn]

∂ξ[nq]∣∣∣~r[ijmn]

∣∣∣2 (78)

k2[ijmn] = k1[ijmn] −
∣∣∣~r[ijmn]

∣∣∣
∂k2[ijmn]

∂ξ[nq]
= ∂k1ij

∂ξ[nq]
− ~r[ijmn]

|~r[ijmn]| •
∂~r[ijmn]

∂ξ[nq]

(79)

d) Loop over l calculating Grindhammer Contributions to the Sums:
Trans[ijlmn] is defined as the fraction of the energy in plane i of shower n that is contributed

by th lth term in the Grindhammer expansion to crystal m by integrating over a triangle defined
by three vertices at: a) the point of the intersection of plane i of shower n with the jth edge of the
crystal m; b) the point of intersection between the plane i and the j+1st edge of the crystal m; and
c) the point where the nth photon trajectory crosses the ith plane of shower n. Taking the relations
in the sections above into consideration the calculation for Trans[inmlj] becomes:

Trans[inmlj] =
ε[lin]h[ijnm]

2π
√

h2
[ijnm] + R2

[lin]

tan−1

 k1[ijnm]√
h2

[ijnm] + R2
[lin]

− tan−1

 k2[ijnm]√
h2

[ijnm] + R2
[lin]

 (80)
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and its derivatives via:

∂Trans[inmlj]

∂ξ[nq]
=

∂Trans[inmlj]

∂h[ijnm]

∂h[ijnm]

∂ξ[nq]
+

∂Trans[inmlj]

∂k1[ijnm]

∂k1[ijnm]

∂ξ[nq]
+

∂Trans[inmlj]

∂k2[ijnm]

∂k2[ijnm]

∂ξ[nq]

+
∂Trans[inmlj]

∂ε[lin]

∂ε[lin]

∂ξ[nq]
+

∂Trans[inmlj]

∂R[lin]

∂R[lin]

∂ξ[nq]

(81)

with:

∂Trans[inmlj]

∂h[ijnm]
=

Trans[inmlj]

h[ijnm]
− h[ijnm]Trans[inmlj](

h2
[ijnm]

+R2
[lin]

)
−

ε[lin]h
2
[ijnm]

2π

(
h2
[ijnm]

+R2
[lin]

)  k1[ijnm](
k12

[ijnm]
+h2

[ijnm]
+R2

[lin]

) − k2[ijnm](
k22

[ijnm]
+h2

[ijnm]
+R2

[lin]

) (82)

∂Trans[inmlj]

∂k1[ijnm]
=

ε[lin]h[ijnm]

2π

(
k12

[ijnm]
+h2

[ijnm]
+R2

[lin]

)
∂Trans[inmlj]

∂k2[ijnm]
=

−ε[lin]h[ijnm]

2π

(
k22

[ijnm]
+h2

[ijnm]
+R2

[lin]

) (83)

∂Trans[inmlj]

∂R[lin]
= −R[lin]Trans[inmlj](

h2
[ijnm]

+R2
[lin]

)
− ε[lin]h[ijnm]

2π

(
h2
[ijnm]

+R2
[lin]

)  1(
k12

[ijnm]
+h2

[ijnm]
+R2

[lin]

) − 1(
k22

[ijnm]
+h2

[ijnm]
+R2

[lin]

) (84)

∂Trans[inmlj]

∂ε[lin]

=
Trans[inmlj]

ε[lin]

(85)

∆E[mn] =

∑
i

dedx[in] ×
∑
lj

Trans[inmlj]

× E0[n] (86)

∂∆E[mn]

∂ξ[n′q]
=

[(∑
i

dedx[in′ ] ×
∑
lj

Trans[in′mlj]

)
∂E0[n′ ]
∂ξ[n′q]

+(∑
i

∂dedx
[in′ ]

∂ξ[n′q]
×∑

lj
Trans[in′mlj]

)
× E0[n′ ] +

(∑
i

dedx[in′ ] ×
∑
lj

∂Trans
[in′mlj]

∂ξ[n′q]

)
× E0[n′ ]

] (87)

VI. Calculation of fleak

A calculation of the back leakage is available, but is not currently in use because a cluster
calibration for this algorithm is first required. Calculation of fleak

fleak is a factor that estimates back leakage of energy beyond the crystal boundary. With the
back plane of the crystal is defined by:

dr =
_
αpr • ~x (88)

the distance from x0 to the back plane along the t direction is:

zp =
dr − _

αpr • ~x0

_
αpr •

_

t
(89)
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The derivatives with respect to the parameter ak is:

dzp

dak

=

(
_
αpr •

_

t
)

d~x0

dak
• _

αpr −
(
dr − _

αpr • ~x0

)
d

_
t

dak
• _

αpr(
_
αpr •

_

t
)2 (90)

where ak is x0[n], y0[n], z0[n], θt[n] or φt[n]

the factor fleak is determined by:

fleak = P (α, βzp) =
γ (α, βzp)

Γ (α)
(91)

where:
γ (α, x) =

∫ x

0
e−ttα−1dt (92)

The incomplete gamma function γ (α, x) has a fast converging series expansion for x < α + 1:

γ (α, x) = e−xxa
∞∑

n=0

Γ(α)

Γ(α + 1 + n)
xn (93)

and a rapidly converging continuing fraction representation otherwise:

γ (α, x) = 1− e−xxα

(
1

x + 1− α−
1(1− α)

x + 3− α−
2(2− α)

x + 5− α−
· · ·
)

(94)

An excellent approximation for Gamma due to Lanczos:

Γ (z) ≈ (z + 5.5)z+
1
2 e−(z+5.5) × 2π

z

[
c0 + c1

z+1
+ c2

z+2
+ · · · c6

z+6

]
(95)

is employed in evaluating fleak.
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