Scientific Computing: Lecture 26

- Time series data
- Fourier Analysis
- Discrete Fourier Transforms
- Python Tools

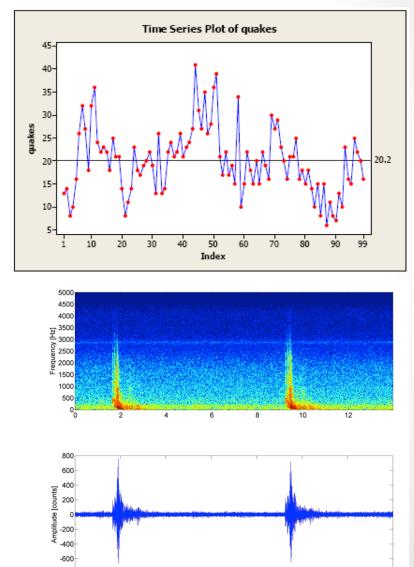
CLASS NOTES

× Last Class!× WORK ON PROJECTS!

University of Mississippi Dept. of Physics and Astronomy Phys 730, Dr. Gladden

Time Series Analysis

- Analysis of time series data is important in many areas of science and engineering
 - Acoustics
 - Optics
 - Geophysics
 - Health
 - Biological systems
 - Wireless communications



10

Time [seconds]

12

-800^L

University of Mississippi Dept. of Physics and Astronomy Phys 730, Dr. Gladden

Fourier Transform

- A Fourier transform converts time series data (a response in time) into frequency data (a response in frequency space).
- It can also be used on real space data to convert it to wavenumber space (sometimes called "k" space from quantum mechanics or crystallography)
- For a continuous time series signal f(t), the Fourier transform is:

$$\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i\omega t}dt$$

• This results in a complex function in frequency space.

Discrete Fourier Transform

- DFT can be performed on discrete data sets rather than continuous functions
 - Integrals become summations
- *f_k* is the signal measured at time step *k* with a total of N samples.

$$F_n = \sum_{k=1}^N f_k e^{-2\pi i k n/N}$$

University of Mississippi Dept. of Physics and Astronomy Phys 730, Dr. Gladden

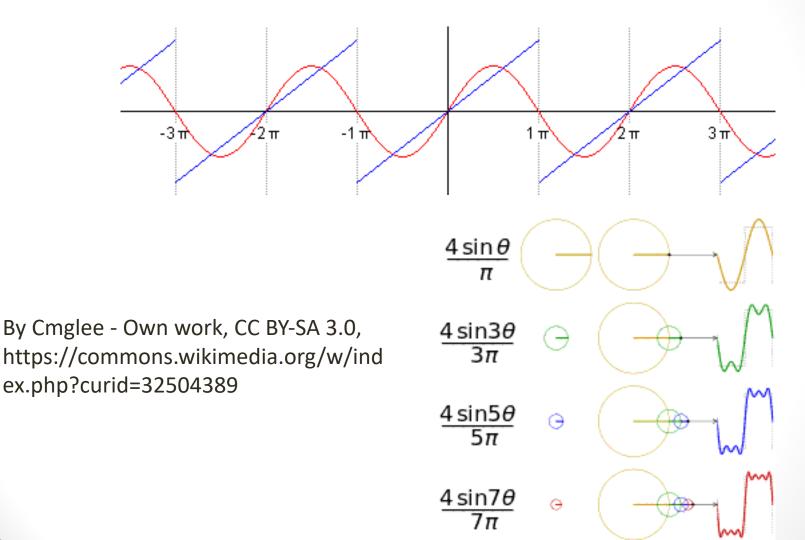
Fourier Series

- Basic concept is that any function can be represented by an infinite series of harmonic sine and cosine functions.
- For a function f(x) that is defined over a domain $[-\pi, \pi]$

$$f(x) = A_0/2 + \sum_{n=1}^{N} \left[A_n \cos(nx) + B_n \sin(nx)
ight]$$
 $A_0 = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) dx \quad A_n = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos(nx) dx$
 $B_n = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin(nx) dx$

University of Mississippi Dept. of Physics and Astronomy Phys 730, Dr. Gladden

Sawtooth and Square Waves



University of Mississippi Dept. of Physics and Astronomy Phys 730, Dr. Gladden

Importance of Sampling Rates

- Nyquist Frequency
 - For discrete data, there is a minimum time step between data points. This means there is a maximum frequency that can be determined:
 - $N_f = \frac{1}{2 \Delta t}$ although better to limit yourself to a maximum frequency that is about N_f / 10.

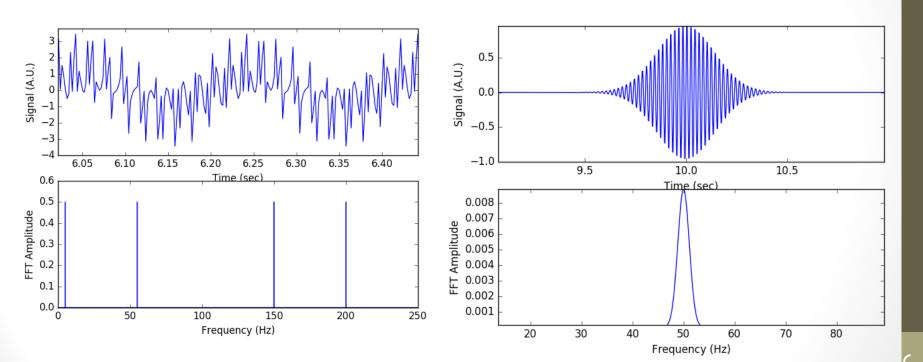
Fast Fourier Transform

- DFT requires 2N² computations which is rather expensive.
- Cooley and Tukey came up a short cut that reduced the number of computations to 2 N log(N), but a restriction was that N was a power of 2 (256, 512, 1028, ...)
- Most modern FFT tools actually use a modification of the original FFT which can work with any number of sample points – although powers of 2 are most efficient.

Examples

Multi-tone (harmonic)

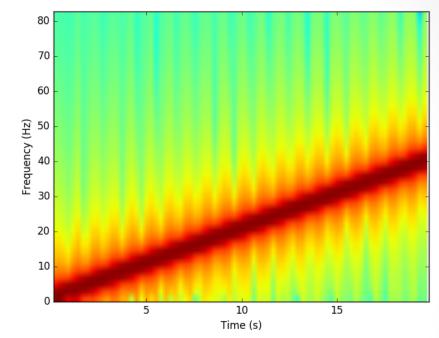
Wavepacket

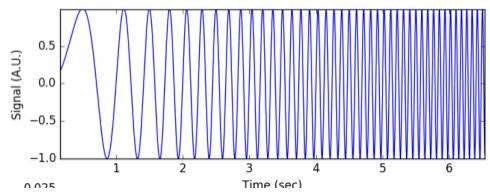


University of Mississippi Dept. of Physics and Astronomy Phys 730, Dr. Gladden

Spectrogram

- Often the frequency content in a signal varies with time.
- A spectrogram performs an FFT on a running window in the signal.
- Here is a chirp signal

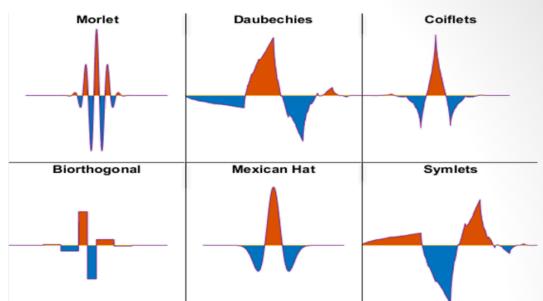




University of Mississippi Dept. of Physics and Astronomy Phys 730, Dr. Gladden

Other tools: Wavelets

 A powerful new method for time series analysis is wavelets.



- Wavelets do a better job of analyzing signals with sharp jumps
- Instead of sines and cosines (which go on forever in time), wavelets are functions more localized in time.
- There are many good resources on the web.
- We won't go into wavelets here, but educate yourself!

11