
J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Scientific	Computing:	Lecture	24
• General Introduction to Parallel Processing
• Model for parallelization (hardware)
• Memory architectures
• Programming models
• GPUs – Graphical Processor Units

Ò HW09 due Monday.
Ò Reading in handout.
Ò WORK ON PROJECTS!

CLASS	NOTES

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Introduction	to	parallel	processing
• Parallel computing is a very broad term describing

schemes by which to break up large problems into
multiple smaller problems.

• Some problems are easy to cast in a parallel form:

• Need to fit experimental data to a model at 100
different temperature points.

• Have 5 different machines work on 20 different data
sets (temperatures) at the same time.

• Important characteristic: each job is independent of
the results of the previous jobs.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Introduction	to	parallel	processing
• Other problems are more difficult to parallelize
• Molecular dynamics:
• each time step in the simulation depends on the state at the previous

time step.
• Break up by space – have different CPUs work on the same time step,

but different sets of atoms.
• The ‘boundary’ atoms are tricky!

• “I know how to make 4
horses pull a cart. I
don’t know how to
make 1024 chickens
do it!”

~~Enrico Clementi

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Introduction	to	parallel	processing
• Traditional:
• Serial computing instructions and data are streamed

to CPU in sequence.
• Parallel:
• Problem is compartmentalized.
• A series of instructions are generated for each part

and sent to multiple CPUs.
• Results are recombined for the overall solution.

• Seriously parallel problems
• Climate models, molecular dynamics, signal

processing, fluid dynamics.
• Written in compiled languages (C, C++, Fortran,…)

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Models	– Flynn’s	Taxonomy
• Single Instruction, Single Data

• Traditional serial computer

• 1 source of data (memory),
1 instruction executed at a time.

• Multiple Instruction, Single Data

• 1 source of data to multiple CPUs, but each CPU
performs different instructions on the same data.

• This is very rare and only a few such machines have
been built to solve very specific problems.

load A
load B
C=A+B
A=B*2
store A

tim
e

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Models	– Flynn’s	Taxonomy
• Single Instruction, Multiple Data
• Multiple processing units (CPUs), each execute the

SAME instruction at the SAME time, but on different
data.
• Pretty specialized. Vector machines like Cray C90 and

NEC SX-2.

CPU#1 CPU#2 CPU#3
load A(1) load A(2) load A(3)
load B(1) load B(2) load B(3)
C(1)=A(1)+B(1) C(2)=A(2)+B(2) C(3)=A(3)+B(3)
store C(1) store C(2) store C(3)

tim
e

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Models	– Flynn’s	Taxonomy
• Multiple Instruction, Multiple Data
• Each CPU executes different instructions on different

data streams.
• Provides the highest flexibility and easiest to

implement.
• Most common model. Examples: Multicore CPUs,

clusters, grids.
CPU#1 CPU#2 CPU#3
load A(1) call funct i=0
load B(1) x=funct(y) i +=1
C(1)=A(1)+B(1) sum=x**2 ...
store C(1) store sum ...

tim
e

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Memory	Architectures	– Shared	
Memory
• Shared Memory

• All CPUs see the same memory space all the time.

• When CPU#1 changes an element in an array, all CPUs
immediately have access to the new value

• Advantages:
• Global addresses, easier to program

• Data sharing is fast

• Disadvantages
• Lack of scalability – more

CPUs means more I/O traffic.

• Programmer must be careful that
the order of instructions on each CPU is correctly timed.

memory

CPU1

CPU2

CPU3

CPU4

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Distributed	Memory
• Each CPU has it’s own memory

• Communication is required to move data from one block to
another

• Advantages:

• Scalable: only 1 CPU per memory block

• Easy and cheap to build – just a pile of PCs will do.

• Disadvantages

• Programmer is responsible for lots of details for flow and
access of data.

• Traditional data structures may not be easily mapped from
traditional global memory model.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Distributed	Memory
• Each CPU has it’s own memory
• Communication is required to move data from one block to

another.
• ‘Interconnects’ become the bottleneck
• Gigabit ethernet, fiber optic, infinni-band.

memory

CPU#1

memory

CPU#2

memory

CPU#3

memory

CPU#4

memory

CPU#5

memory

CPU#6

network
interconnect

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

HPC	Cluster	Examples	inMS
MS Center for Supercomputing
Research (UM, Oxford)

DoD Supercomputing
Research Center (ERDC, Vicksburg)

Sequia: 1304 cores,
Catalpa: 320 cores, 2.5 TB
Maple: 1228 cores, 29 GPUs, 3.3 TB

Cray XE6: 150,912 cores, 1509 TFLOPS
SGI Altix: 7,680 cores, 172 TFLOPS
Cray XE6: 14,976 cores, 138 TFLOPS

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Programming	Models
• There are MANY ways to break larger problems into smaller

ones and methods to implement them. We’ll discuss 2 most
common.
• Threads
• Subroutines are branched off to processors while program

continues to execute.
• Threading has been supported for years.
• Specifics depend on OS
• POSIX threads: UNIX flavors and Mac OS X
• Open MP: UNIX and Windows NT
• Microsoft proprietary implementation

• Python has several threading modules.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Programming	models
• Message Passing Interface (MPI)

• Most common model on large machines

• Tasks share data by sending and receiving messages.

• Require cooperation: a ‘send’ message must
coordinate with a ‘receive’ operation.

• MPI is pretty much industry standard.

• Several proprietary libraries as well as open source
(openMPI) available for all OS’s.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Design	of	parallel	programs
• Automatic
• Take existing serial code and let a special compiler

break loops into tasks for different CPUs.
• Usually not very efficient – does not achieve optimal

speed up. In fact, performance can actually get worse!
• Programmer Directed
• Manually edit code using MPI commands
• More fine tuning and optimization IF you know what

you are doing.
• Can be difficult and time consuming.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

MPI	commands	with	pympi
• pyMPI module requires MPI (like openMPI) libraries to

be installed and configured (independent of python)

• Commands after ‘import mpi’

• mpi.size() – number of processors

• mpi.rank() – specific processor. mpi.rank=0 is called
the ‘root’ processor that acts like a traffic cop directing
the other CPUs.

• Broadcast – broadcast data to all processors.
Code on root: mpi.bcast(some_array)
Code on rest: some_array = mpi.bcast()

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

MPI	commands	with	pympi
• Commands after ‘import mpi’
• Reductions: Inverse of broadcast – root requests data

from all other tasks.
• Example:
totalArea = mpi.reduce(localArea, mpi.SUM)
where localArea are areas computed by each task and
mpi.SUM adds all the localAreas as they come in to finally
result in the totalArea.

• Point to point communication (to a specific task) with
mpi.send(message, task#) and
msg,status=mpi.recv(task#)

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi

Dept. of Physics and Astronomy

Phys 730, Dr. Gladden

MPI	commands	with	pympi
• Commands after ‘import mpi’

• Scatter/gather methods

• Break sequence into even parts and send each part to a

different task for processing.

• After processing, partial results are gathered and

reassembled by root.

• Example:

seq=[1,2,3,4,5,6]
local_seq = mpi.scatter(seq)
if mpi.size=3, then local_seq = [1,2] on task 0,

[3,4] in task 1, and [5,6] in task 3.

new_seq = mpi.gather(local_seq)

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Parallel	Python
• While MPI is an industry standard for very large

machines, pyMPI is a bit awkward to use – MPI libraries
(not python) need to be loaded and configured on all
machines, syntax is not very intuitive.
• Parallel Python is a more intuitive and flexible way to

taking advantage of many CPUs.
• Can be used on a multicore processor (SMP) or a large

cluster – even widely distributed processors.
• Syntax is more “pythonic” and intuitive.
• Written 100% in python – easy to get “under the

hood” to see what is happening.
• Does NOT come with Enthought, but can be loaded as

an add-on.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Parallel	Python
• Model and Syntax
• Each node (server) must be running a small program

called ‘ppserver.py’ which listens for requests.
• The controller (your program) contacts each listed

server and requests a computation through a socket.
• Each server returns it’s result and controller stitches

the results back together.
• Servers indicated by:
ppservers =
(‘myhost.olemiss.edu’,’myhost2.olemiss.edu’)

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Parallel	Python	– Starting	Jobs
• Establish connections to server pool:
job_server = pp.Server(numcpus,\
ppservers = ppservers)
• Start a job by sending a function to evaluate, usually in a

loop):
jobs[i] = job_server.submit(myfunct,\
args=(functargs),\
depfuncs = (funct1,funct2,..))
• Compile results:
result = sum([jobs[i]() \
for i in range(len(jobs))])

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Parallel	Python	- Gotchas
• Parallel python is based on the subprocess module which

starts new forks for each request. Will happily add 1000
forks even if run on a machine with only 4 processors.

• Need to check how many processors are actually free.

• ‘mpstat –P ALL’ is useful for this on linux systems.

• If too many remote processes are requested, the
subprocess module can fail with a ‘too many open files’
error. I found this systems fails for Nproc > 12.

• You take a BIG hit on speed if your processes are remote
(over ethernet or internet).

• Conversely, very efficient if all processes are local.

• See code run remotely vs. locally.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Graphical	Processing	Units
• Relatively new paradigm in parallel processing.
• They are in the class of a vector processor.
• GPUs have long been around and used to process,

control, and update displays. They have inherently
operated in a highly fashion
• Controlling thousands to millions of completely

independent pixels on the screen.
• So thousands of cores on a single chip!

• HOWEVER, these cores
are NOT CPUs and have
limited operation sets!

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

Applications	of	GPUs
• Types of applications of GPUs
• Problems that exhibit a high degree of “data-

parallelism”
• Single Instruction, Multiple Data

• These limitations mean GPUs can only be used for a
subset of problems.
• Ray tracing
• Some large matrix operations
• Signal processing

• HPC applications are now including support for GPUs
• LAMPS, NAMD, Caffe (artificial vision), MATLAB

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

GPU	Hardware	and	Programming
• Commercial GPU systems
• TESLA K80 by NVIDIA: 4992 cores
• FirePro by ATI: 2816 cores

• Programming environments
• CUDA
• OpenCL – Apple, Inc.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

GPUs	and	Python
• GPU programming is still pretty low level.
• Python implementations and tools for GPU programming

as still quite immature – but rapidly evolving!
• All still require writing some code directly in c++ as a

string which gets passed through Python to the
underlying libraries.
• pyCUDA
• pyOpenCL

