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Scientific	Computing:	Lecture	24
• General Introduction to Parallel Processing
• Model for parallelization (hardware)
• Memory architectures
• Programming models
• GPUs – Graphical Processor Units

Ò HW09 due Monday.
Ò Reading in handout.
Ò WORK ON PROJECTS!

CLASS	NOTES
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Introduction	to	parallel	processing
• Parallel computing is a very broad term describing 

schemes by which to break up large problems into 
multiple smaller problems.

• Some problems are easy to cast in a parallel form:

• Need to fit experimental data to a model at 100 
different temperature points.

• Have 5 different machines work on 20 different data 
sets (temperatures) at the same time.

• Important characteristic: each job is independent of 
the results of the previous jobs.
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Introduction	to	parallel	processing
• Other problems are more difficult to parallelize
• Molecular dynamics: 
• each time step in the simulation depends on the state at the previous 

time step.
• Break up by space – have different CPUs work on the same time step, 

but different sets of atoms.
• The ‘boundary’ atoms are tricky!

• “I know how to make 4 
horses pull a cart.  I 
don’t know how to 
make 1024 chickens
do it!”  

~~Enrico Clementi
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Introduction	to	parallel	processing
• Traditional:
• Serial computing instructions and data are streamed 

to CPU in sequence.
• Parallel:
• Problem is compartmentalized.
• A series of instructions are generated for each part 

and sent to multiple CPUs. 
• Results are recombined for the overall solution.

• Seriously parallel problems
• Climate models, molecular dynamics, signal 

processing, fluid dynamics.
• Written in compiled languages (C, C++, Fortran,…)
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Models	– Flynn’s	Taxonomy
• Single Instruction, Single Data

• Traditional serial computer

• 1 source of data (memory), 
1 instruction executed at a time.

• Multiple Instruction, Single Data

• 1 source of data to multiple CPUs, but each CPU 
performs different instructions on the same data.

• This is very rare and only a few such machines have 
been built to solve very specific problems. 

load A
load B
C=A+B
A=B*2
store A

tim
e
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Models	– Flynn’s	Taxonomy
• Single Instruction, Multiple Data
• Multiple processing units (CPUs), each execute the 

SAME instruction at the SAME time, but on different 
data.
• Pretty specialized.  Vector machines like Cray C90 and 

NEC SX-2.

CPU#1  CPU#2  CPU#3
load A(1)  load A(2)  load A(3) 
load B(1)  load B(2)  load B(3)
C(1)=A(1)+B(1) C(2)=A(2)+B(2) C(3)=A(3)+B(3)
store C(1)  store C(2)  store C(3) 

tim
e
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Models	– Flynn’s	Taxonomy
• Multiple Instruction, Multiple Data
• Each CPU executes different instructions on different 

data streams.
• Provides the highest flexibility and easiest to 

implement.
• Most common model.  Examples: Multicore CPUs, 

clusters, grids.
CPU#1  CPU#2  CPU#3
load A(1)  call funct  i=0 
load B(1)  x=funct(y)  i +=1
C(1)=A(1)+B(1) sum=x**2  ...
store C(1)  store sum  ... 

tim
e
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Memory	Architectures	– Shared	
Memory
• Shared Memory

• All CPUs see the same memory space all the time.

• When CPU#1 changes an element in an array, all CPUs 
immediately have access to the new value

• Advantages:
• Global addresses, easier to program

• Data sharing is fast

• Disadvantages
• Lack of scalability – more 

CPUs means more I/O traffic.

• Programmer must be careful that 
the order of instructions on each CPU is correctly timed.

memory

CPU1

CPU2

CPU3

CPU4
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Distributed	Memory
• Each CPU has it’s own memory

• Communication is required to move data from one block to 
another

• Advantages:

• Scalable: only 1 CPU per memory block

• Easy and cheap to build – just a pile of PCs will do.

• Disadvantages

• Programmer is responsible for lots of details for flow and 
access of data.

• Traditional data structures may not be easily mapped from 
traditional global memory model.
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Distributed	Memory
• Each CPU has it’s own memory
• Communication is required to move data from one block to 

another.
• ‘Interconnects’ become the bottleneck
• Gigabit ethernet, fiber optic, infinni-band.

memory

CPU#1

memory

CPU#2

memory

CPU#3

memory

CPU#4

memory

CPU#5

memory

CPU#6

network
interconnect
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HPC	Cluster	Examples	inMS
MS Center for Supercomputing 
Research (UM, Oxford)

DoD Supercomputing
Research Center (ERDC, Vicksburg)

Sequia: 1304 cores, 
Catalpa: 320 cores, 2.5 TB
Maple: 1228 cores, 29 GPUs, 3.3 TB

Cray XE6: 150,912  cores, 1509 TFLOPS
SGI Altix: 7,680 cores, 172 TFLOPS
Cray XE6: 14,976 cores, 138 TFLOPS
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Programming	Models
• There are MANY ways to break larger problems into smaller 

ones and methods to implement them.  We’ll discuss 2 most 
common.
• Threads
• Subroutines are branched off to processors while program 

continues to execute.
• Threading has been supported for years.
• Specifics depend on OS
• POSIX threads: UNIX flavors and Mac OS X
• Open MP: UNIX and Windows NT
• Microsoft proprietary implementation

• Python has several threading modules.
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Programming	models
• Message Passing Interface (MPI)

• Most common model on large machines

• Tasks share data by sending and receiving messages.

• Require cooperation: a ‘send’ message must 
coordinate with a ‘receive’ operation.

• MPI is pretty much industry standard.

• Several proprietary libraries as well as open source 
(openMPI) available for all OS’s.
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Design	of	parallel	programs
• Automatic
• Take existing serial code and let a special compiler 

break loops into tasks for different CPUs.
• Usually not very efficient – does not achieve optimal 

speed up.  In fact, performance can actually get worse!
• Programmer Directed
• Manually edit code using MPI commands
• More fine tuning and optimization IF you know what 

you are doing.
• Can be difficult and time consuming.



J.R. Gladden, Dept. of Physics, Univ. of Mississippi

University of Mississippi
Dept. of Physics and Astronomy
Phys 730, Dr. Gladden

MPI	commands	with	pympi
• pyMPI module requires MPI (like openMPI) libraries to 

be installed and configured (independent of python)

• Commands after ‘import mpi’

• mpi.size() – number of processors

• mpi.rank() – specific processor. mpi.rank=0 is called 
the ‘root’ processor that acts like a traffic cop directing 
the other CPUs.

• Broadcast – broadcast data to all processors. 
Code on root: mpi.bcast(some_array)
Code on rest: some_array = mpi.bcast()
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MPI	commands	with	pympi
• Commands after ‘import mpi’
• Reductions: Inverse of broadcast – root requests data 

from all other tasks.
• Example: 
totalArea = mpi.reduce(localArea, mpi.SUM)
where localArea are areas computed by each task and 
mpi.SUM adds all the localAreas as they come in to finally 
result in the totalArea.

• Point to point communication (to a specific task) with 
mpi.send(message, task#) and 
msg,status=mpi.recv(task#)
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MPI	commands	with	pympi
• Commands after ‘import mpi’

• Scatter/gather methods

• Break sequence into even parts and send each part to a 

different task for processing.

• After processing, partial results are gathered and 

reassembled by root.

• Example:

seq=[1,2,3,4,5,6]
local_seq = mpi.scatter(seq)
if mpi.size=3, then local_seq = [1,2] on task 0, 

[3,4] in task 1, and [5,6] in task 3.

new_seq = mpi.gather(local_seq)
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Parallel	Python
• While MPI is an industry standard for very large 

machines, pyMPI is a bit awkward to use – MPI libraries 
(not python) need to be loaded and configured on all 
machines, syntax is not very intuitive.
• Parallel Python is a more intuitive and flexible way to 

taking advantage of many CPUs.
• Can be used on a multicore processor (SMP) or a large 

cluster – even widely distributed processors.
• Syntax is more “pythonic” and intuitive.
• Written 100% in python – easy to get “under the 

hood” to see what is happening.
• Does NOT come with Enthought, but can be loaded as 

an add-on.
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Parallel	Python
• Model and Syntax
• Each node (server) must be running a small program 

called ‘ppserver.py’ which listens for requests.
• The controller (your program) contacts each listed 

server and requests a computation through a socket.
• Each server returns it’s result and controller stitches 

the results back together.
• Servers indicated by:  
ppservers = 
(‘myhost.olemiss.edu’,’myhost2.olemiss.edu’)
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Parallel	Python	– Starting	Jobs
• Establish connections to server pool:
job_server = pp.Server(numcpus,\
ppservers = ppservers)
• Start a job by sending a function to evaluate, usually in a 

loop):
jobs[i] = job_server.submit(myfunct,\
args=(functargs),\
depfuncs = (funct1,funct2,..))
• Compile results:
result = sum( [ jobs[i]() \
for i in range(len(jobs)) ] )
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Parallel	Python	- Gotchas
• Parallel python is based on the subprocess module which 

starts new forks for each request. Will happily add 1000 
forks even if run on a machine with only 4 processors.

• Need to check how many processors are actually free.

• ‘mpstat –P ALL’ is useful for this on linux systems.

• If too many remote processes are requested, the 
subprocess module can fail with a ‘too many open files’ 
error.  I found this systems fails for Nproc > 12.

• You take a BIG hit on speed if your processes are remote 
(over ethernet or internet).

• Conversely, very efficient if all processes are local.

• See code run remotely vs. locally.
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Graphical	Processing	Units
• Relatively new paradigm in parallel processing.
• They are in the class of a vector processor.
• GPUs have long been around and used to process, 

control, and update displays.  They have inherently 
operated in a highly fashion
• Controlling thousands to millions of completely 

independent pixels on the screen.  
• So thousands of cores on a single chip!

• HOWEVER, these cores 
are NOT CPUs and have 
limited operation sets!
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Applications	of	GPUs
• Types of applications of GPUs
• Problems that exhibit a high degree of “data-

parallelism”
• Single Instruction, Multiple Data

• These limitations mean GPUs can only be used for a 
subset of problems.
• Ray tracing
• Some large matrix operations
• Signal processing

• HPC applications are now including support for GPUs
• LAMPS, NAMD, Caffe (artificial vision), MATLAB
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GPU	Hardware	and	Programming
• Commercial GPU systems
• TESLA K80 by NVIDIA: 4992 cores
• FirePro by ATI: 2816 cores

• Programming environments
• CUDA
• OpenCL – Apple, Inc.
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GPUs	and	Python
• GPU programming is still pretty low level.
• Python implementations and tools for GPU programming 

as still quite immature – but rapidly evolving!
• All still require writing some code directly in c++ as a 

string which gets passed through Python to the 
underlying libraries.
• pyCUDA
• pyOpenCL


