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Scientific	Computing:	Lecture	23
• Introduction to relaxation methods

• Jacobi
• Gauss-Seidel
• Successive Overrelaxation

• Example: Laplace Equation (electric potential)
• Source Terms: Poisson’s Equation
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Ò HW09 due Monday (last HW!).
Ò You should have proposals back through Box.
Ò Work on projects!
Ò Parallel programming and GUIs coming up next

CLASS	NOTES
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Relaxation	Methods
• Generally relaxation methods are useful for systems in 
equilibrium.

• Consider the 2D diffusion (or thermal) equation:

• LHS represents a temperature change (energy flux). 
When the system is in equilibrium (as tè∞), the net flux 
is 0.

• Then temperature would be given by:
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Laplace	Equation
• Laplace Equation gives the electrostatic potential.  The 

‘static’ here implies equilibrium.

• Note it has the same form as the diffusion equation for 
tè∞.

• Algorithms based on this principle are called relaxation 
methods.

• These are iterative procedures – like time steps but really 
just gradually approaching the equilibrium state. 3
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Boundary	Conditions
• Boundary conditions really define the system here.
• BCs are needed on ALL edges of your computational 

domain.
• Examples are the temperature of the walls of a container 

or the constant electric potential at each edge.
• Theses BCs must be kept constant over the entire 

iterative process until the solution is found. 
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Jacobi	Method
• In the normal way, discretize each of the 2nd order 

derivative. We include the time derivative term because 
we are “letting the solution evolve” until equilibrium is 
reached. 

• Here n is a “time” index, “i” is the x index, and “j” is the y 
index.

• This is based on the FTCS method we discussed last time.
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Jacobi	Method
• From our FTCS stability requirement:

• We want the largest stable time step to get to equilibrium as 
fast as possible.

• This is the Jacobi method.  Note the solution at each step 
and point is nothing more than computing the average of 
the solution at each point bounding it (assume hx=hy).
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Final	state	and	Initial	Guess
• Final State

• This step will be repeated until the solution “stops” 
changing – indicating equilibrium has been reached.

• Often the solution never actually stops.  Need to provide a 
tolerance metric and target .

• Initial Guess
• Obvious initial values for all interior points is 0.  The farther 

this is away from final solution, the longer it will take.
• Often possible to make a more intelligent guess based in 

BCs. Can dramatically reduce number of iterations!
• Horizontal plane with average of all BCs
• Flat plane sloping from high to low side of BCs.
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Gauss-Seidel	Method
• A simple change can speed convergence.
• We already have updated solutions for half of the 

bounding points – lets use them!
• This is called Gauss-Seidel method.  It speeds 

convergence and reduces the amount of memory 
required.  We only need to store half the number of 
points.
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Simultaneous	Overrelaxation
• Another idea is to take bigger steps toward the 

equilibrium solution. 
• Before, all steps were in the same direction.  How about 

overshooting the solution and coming back.
• This is called Simultaneous Overrelaxation (SOR).
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Overrelaxation Parameter
• Trick is to find a good value for the overrelaxation

parameter ω.  For stability, it MUST be between 1 and 2.
• Optimal solution for a Nx X Ny grid is 
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Sample	Output
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Poisson	Equation
• The Poisson equation allows for interior source terms.
• Here the sources of potential come in the form of a 

charge density over the interior points.

• We discretize using the same procedure as Laplace.
• Here ρ gives the charge density over the interior points.
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Gauss-Seidel	for	Poisson
• Using the GS method, the discrete equation we need is

• Here we have assumed hx = hy = h
• We can define a python function to return the charge 

density which will be called inside the interior points 
loop.
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Exercise:	Poisson	Equation
• Take the Laplace code and adjust it to solve the Poisson 

equation.
• Define a charge density of your choosing and run it.

• It may be easiest to initially try a simple dipole with 
opposite sign charges at two different points.

• Then try a ring of charge near the center of the 
domain.
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