Scientific Computing: Lecture 23

* Introduction to relaxation methods

Jacobi

Gauss-Seidel

Successive Overrelaxation
* Example: Laplace Equation (electric potential)
* Source Terms: Poisson’s Equation

CLASS NOTES
x HWO09 due Monday (last HW!).
x You should have proposals back through Box.

x Work on projects!
x Parallel programming and GUIs coming up next ( 1 J
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Relaxation Methods

Generally relaxation methods are useful for systems in
equilibrium.

Consider the 2D diffusion (or thermal) equation:
oI (x,y,t)  (0°T 0°T
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LHS represents a temperature change (energy flux).

When the system is in equilibrium (as #=» o), the net flux
is 0.

Then temperature would be given by:
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Laplace Equation

* Laplace Equation gives the electrostatic potential. The
‘static’ here implies equilibrium.

0°Pd 0P
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* Note it has the same form as the diffusion equation for
{=>» o,

* Algorithms based on this principle are called relaxation
methods.

* These are iterative procedures — like time steps but really
just gradually approaching the equilibrium state. [ . J
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Boundary Conditions

* Boundary conditions really define the system here.

* BCs are needed on ALL edges of your computational
domain.

* Examples are the temperature of the walls of a container
or the constant electric potential at each edge.

* Theses BCs must be kept constant over the entire
iterative process until the solution is found.

h, e
O boundary point QO interior point
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Jacobi Method

* |In the normal way, discretize each of the 2" order
derivative. We include the time derivative term because
we are “letting the solution evolve” until equilibrium is
reached.
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* Here nis a “time” index, “i” is the x index, and “j” is the y
index.

* This is based on the FTCS method we discussed last time. [ : }
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Jacobi Method

* From our FTCS stability requirement:
pr  opr 1
h2  h2 T 2
L Y
* We want the largest stable time step to get to equilibrium as
fast as possible.

* This is the Jacobi method. Note the solution at each step
and point is nothing more than computing the average of
the solution at each point bounding it (assume £,=h,).
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Final state and Initial Guess

* Final State

This step will be repeated until the solution “stops”
changing — indicating equilibrium has been reached.

Often the solution never actually stops. Need to provide a
tolerance metric and target .

* |Initial Guess

Obvious initial values for all interior points is 0. The farther
this is away from final solution, the longer it will take.

Often possible to make a more intelligent guess based in

BCs. Can dramatically reduce number of iterations!
Horizontal plane with average of all BCs ( . J
Flat plane sloping from high to low side of BCs.
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Gauss-Seidel Method

* A simple change can speed convergence.

* We already have updated solutions for half of the
bounding points — lets use them!

* This is called Gauss-Seidel method. It speeds
convergence and reduces the amount of memory
required. We only need to store half the number of
points.
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Simultaneous Overrelaxation

* Another idea is to take bigger steps toward the
equilibrium solution.

* Before, all steps were in the same direction. How about
overshooting the solution and coming back.

* This is called Simultaneous Overrelaxation (SOR).
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Overrelaxation Parameter

* Trick is to find a good value for the overrelaxation
parameter w. For stability, it MUST be between 1 and 2.

* Optimal solution for a N, X N, grid is
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Sample Output
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Poisson Equation

* The Poisson equation allows for interior source terms.

* Here the sources of potential come in the form of a
charge density over the interior points.

0°0(z,y)  0°®(z,y) 1
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* We discretize using the same procedure as Laplace.

* Here p gives the charge density over the interior points.
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(Gauss-Seidel for Poisson

* Using the GS method, the discrete equation we need is

1 1
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* Here we have assumed h, =h, =h

* We can define a python function to return the charge
density which will be called inside the interior points
loop.
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Exercise: Poisson Equation

* Take the Laplace code and adjust it to solve the Poisson
equation.

* Define a charge density of your choosing and run it.

It may be easiest to initially try a simple dipole with
opposite sign charges at two different points.

Then try a ring of charge near the center of the
domain.
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