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Scientific	Computing:	Lecture	22
• General classifications of PDEs
• Boundary and initial conditions
• Explicit solutions
• FTCS, Lax, Lax-Wendroff
• Stability

• Example: Wave equation

Ò HW09 due next Friday (optional for undergrad students).
Ò Some materials posted on web.
Ò Proposal Comments back to you electronically.

CLASS	NOTES
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General	Classifications	of	PDEs
• Partial differential equations mathematically describe a 

system which depends on multiple variables and their 
derivatives.
• Examples:
• Wave equation (acoustics, optics)
• Laplace equation (electrostatics)
• Schrodinger equation (quantum mechanics)
• Navier-Stokes equation (fluid flow)

• Several general classes of PDEs often dictate different 
numeric approaches
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Classes	of	PDEs
• Consider a generic 2nd order PDE with variables x and y

where A is the solution and the rest are constants.

• hyperbolic if: 

• parabolic if: 

• elliptic if: 

b2 � 4ac > 0

b2 � 4ac = 0
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Some	examples
• 1D Wave equation is hyperbolic:

• Diffusion equation is parabolic:

• Poisson’s equation is elliptic:
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Initial	and	Boundary	Conditions
• Initial Conditions

• Consider one independent variable is time and another 
is space in 1 dimension (say x).

• We need an initial value (at t=0) for all positions along x.

• Boundary conditions

• We also need values at both ends of the space domain 
which are known for all times.

• Driving terms

• Known values of the solution at interior points which 
may change with time.
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Typical	PDE	Grid	(1	space	and	time)
• Space stencil: h and time stencil: τ
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Types	of	Boundary	Conditions
• Dirichlet Boundary Conditions
• Also known as ‘fixed’
• Values of the solution at the end points are known for 

all times – like for a flexible string which is clamped at 
both ends.

• Neumann Boundary Conditions
• Values for the derivative of the solution are known for 

all times – like heat energy flux at the end of a rod.
• Cauchy Boundary Condition
• BOTH the above are known – the value of the solution 

AND the normal derivative – liked a clamped stiff bar.
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Discretization	of	PDEs
• Typical idea is to:
• 1. Convert all partial derivatives into finite difference 

equations via FDA, BDA, or CDA
• Higher order derivatives require more terms

• 2. Algebraically solve for the values of the solution at 
the next time (or space) step in terms of values at 
previous times (or spaces).

• Example: the Advection equation
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Forward	Time-Center	Space	(FTCS)
• Using forward difference method for time and center 

difference method for space derivative, this becomes:

where n is time index and i is space index.
• Now solve for the solution of A at the n+1 time step:

• Unfortunately FTCS is unstable for ALL values of the time 
step!  Solution will eventually “blow up”.
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Lax	Method
• We can improve stability by averaging for the value of A 

at space points before and after:

• Courant-Friedrichs-Lewy (CFL) stability
condition. “c” has units of speed, so
this amounts to saying that the numerics
must be able to “move” faster than the
system.  
• Numeric “speed” is:
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Lax-WendroffMethod
• FTCS and Lax methods are based on dropping 2nd order 

terms. 

• Stability and accuracy are improved by dropping 3rd order 
terms.

• This makes expressions for finite differences more 
complicated algebraically (not shown here).

• Schemes are identical IF:

• For a large time step, Lax method grows (eventually 
blows up)

• For a smaller time step, Lax method decays to 0!

• Sometimes called numeric damping or viscosity. 

⌧ = ⌧max
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Example:	Wave	Equation
• Recall wave equation for homogeneous media and no 

damping can be written as 

• Which involve 2nd order derivatives.  Prescription is the 
same – convert to 2nd order finite difference equations 
and solve for next time step.

• up: u at time plus 1, u: current time, um: time minus 1
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while t <= tstop:
t_old = t; t+=dt
if method == 's':

for i in range(1,n):
up[i] = -um[i] +2*u[i] + C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i],t_old)
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Looping	trick	in	Python
• Here we are looping over time (while loop), then looping 

over space (for loop).
• Since these are arrays, we can leverage the fast 

underlying C code which handles array slicing.
• Called “vectorizing” the code.
• The for loop is replaced by

• Recall 
• This provides a HUGE speed up by pushing the looping 

down to the compiled C code level.
• This is almost as fast as writing the program in C.

up[1:n] = -um[1:n] +2*u[1:n] +C2*(u[0:n-1] - 2*u[1:n] +u[2:n+1]) + dt2*f(x[1:n],t_old)

u[1:n] means u[1], u[2], u[3], …, u[n] 
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Output	with	Dirichlet BCs
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