Scientific Computing: Lecture 22

- General classifications of PDEs
- Boundary and initial conditions
- Explicit solutions
 - FTCS, Lax, Lax-Wendroff
 - Stability
- Example: Wave equation

CLASS NOTES

- **×** HW09 due next Friday (optional for undergrad students).
- **×** Some materials posted on web.
- **×** Proposal Comments back to you electronically.

General Classifications of PDEs

- Partial differential equations mathematically describe a system which depends on multiple variables and their derivatives.
- Examples:
 - Wave equation (acoustics, optics)
 - Laplace equation (electrostatics)
 - Schrodinger equation (quantum mechanics)
 - Navier-Stokes equation (fluid flow)
- Several general classes of PDEs often dictate different numeric approaches

Classes of PDEs

• Consider a generic 2nd order PDE with variables x and y

$$a\frac{\partial^2 A}{\partial x^2} + b\frac{\partial^2 A}{\partial x \partial y} + c\frac{\partial^2 A}{\partial y^2} + d\frac{\partial A}{\partial x} + e\frac{\partial A}{\partial y} + fA(x,y) + g = 0$$

where A is the solution and the rest are constants.
• **hyperbolic** if: $b^2 - 4ac > 0$

- parabolic if: $b^2 4ac = 0$
- elliptic if: $b^2 4ac < 0$

University of Mississippi Dept. of Physics and Astronomy Phys 630, Dr. Gladden

Some examples

• 1D Wave equation is hyperbolic:

$$\frac{\partial^2 A}{\partial t^2} = c^2 \frac{\partial^2 A}{\partial x^2}$$

• Diffusion equation is parabolic:

$$\frac{\partial}{\partial t}T(x,t) = \kappa \frac{\partial^2}{\partial x^2}T(x,t)$$

• Poisson's equation is elliptic:

$$\frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial x^2} = -\frac{1}{\epsilon_0} \rho(x, y)$$

University of Mississippi Dept. of Physics and Astronomy Phys 630, Dr. Gladden

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Initial and Boundary Conditions

- Initial Conditions
 - Consider one independent variable is time and another is space in 1 dimension (say x).
 - We need an initial value (at t=0) for all positions along x.
- Boundary conditions
 - We also need values at both ends of the space domain which are known for all times.
- Driving terms
 - Known values of the solution at interior points which may change with time.

Typical PDE Grid (1 space and time)

Space stencil: h and time stencil: τ

University of Mississippi Dept. of Physics and Astronomy Phys 630, Dr. Gladden

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Types of Boundary Conditions

- Dirichlet Boundary Conditions
 - Also known as 'fixed'
 - Values of the <u>solution</u> at the end points are known for all times – like for a flexible string which is clamped at both ends.
- Neumann Boundary Conditions
 - Values for the <u>derivative</u> of the solution are known for all times – like heat energy flux at the end of a rod.
- Cauchy Boundary Condition
 - BOTH the above are known the value of the solution AND the normal derivative – liked a clamped stiff bar.

Discretization of PDEs

- Typical idea is to:
 - 1. Convert all partial derivatives into finite difference equations via FDA, BDA, or CDA
 - Higher order derivatives require more terms
 - 2. Algebraically solve for the values of the solution at the next time (or space) step in terms of values at previous times (or spaces).
- Example: the Advection equation

$$\frac{\partial A}{\partial t} = -c\frac{\partial A}{\partial x}$$

University of Mississippi Dept. of Physics and Astronomy Phys 630, Dr. Gladden

Forward Time-Center Space (FTCS)

• Using forward difference method for time and center difference method for space derivative, this becomes:

• Now solve for the solution of A at the n+1 time step:

$$A_{i}^{n+1} = A_{i}^{n} - \frac{c\tau}{2h} \left(A_{i+1}^{n} - A_{i-1}^{n} \right)$$

 Unfortunately FTCS is unstable for ALL values of the time step! Solution will eventually "blow up".

Lax Method

• We can improve stability by averaging for the value of A at space points before and after:

$$A_i^{n+1} = \frac{1}{2} \left(A_{i+1}^n + A_{i-1}^n \right) - \frac{c\tau}{2h} \left(A_{i+1}^n - A_{i-1}^n \right)$$

- Courant-Friedrichs-Lewy (CFL) stability condition. "c" has units of speed, so this amounts to saying that the numerics must be able to "move" faster than the system.
- Numeric "speed" is:

 au_{max}

Lax-Wendroff Method

- FTCS and Lax methods are based on dropping 2nd order terms.
- Stability and accuracy are improved by dropping 3rd order terms.
- This makes expressions for finite differences more complicated algebraically (not shown here).
- Schemes are identical IF: $au= au_{max}$
- For a large time step, Lax method grows (eventually blows up)
- For a smaller time step, Lax method decays to 0!
- Sometimes called numeric damping or viscosity.

Example: Wave Equation

- Recall wave equation for homogeneous media and no damping can be written as $\frac{\partial^2 A}{\partial t^2} = c^2 \frac{\partial^2 A}{\partial r^2}$
- Which involve 2nd order derivatives. Prescription is the same – convert to 2nd order finite difference equations and solve for next time step.
- up: u at time <u>plus 1</u>, u: current time, um: time <u>m</u>inus 1

```
while t <= tstop:
t_old = t; t+=dt
if method == 's':
    for i in range(1,n):
        up[i] = -um[i] +2*u[i] + C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i],t_old)
```


Looping trick in Python

- Here we are looping over time (while loop), then looping over space (for loop).
- Since these are arrays, we can leverage the fast underlying C code which handles array slicing.
- Called "vectorizing" the code.
- The for loop is <u>replaced</u> by

 $up[1:n] = -um[1:n] + 2^*u[1:n] + C2^*(u[0:n-1] - 2^*u[1:n] + u[2:n+1]) + dt2^*f(x[1:n],t_old)$

- Recall u[1:n] means u[1], u[2], u[3], ..., u[n]
- This provides a HUGE speed up by pushing the looping down to the compiled C code level.
- This is almost as fast as writing the program in C.

Output with Dirichlet BCs

Dept. of Physics and Astronomy Phys 630, Dr. Gladden

J.R. Gladden, Dept. of Physics, Univ. of Mississippi