Scientific Computing: Lecture 22

- General classifications of PDEs
- Boundary and initial conditions
- Explicit solutions
- FTCS, Lax, Lax-Wendroff
- Stability
- Example: Wave equation

CLASS NOTES

* HW09 due next Friday (optional for undergrad students).
* Some materials posted on web.
* Proposal Comments back to you electronically.

General Classifications of PDEs

- Partial differential equations mathematically describe a system which depends on multiple variables and their derivatives.
- Examples:
- Wave equation (acoustics, optics)
- Laplace equation (electrostatics)
- Schrodinger equation (quantum mechanics)
- Navier-Stokes equation (fluid flow)
- Several general classes of PDEs often dictate different numeric approaches

Classes of PDEs

- Consider a generic $2^{\text {nd }}$ order PDE with variables x and y
$a \frac{\partial^{2} A}{\partial x^{2}}+b \frac{\partial^{2} A}{\partial x \partial y}+c \frac{\partial^{2} A}{\partial y^{2}}+d \frac{\partial A}{\partial x}+e \frac{\partial A}{\partial y}+f A(x, y)+g=0$
where A is the solution and the rest are constants.
- hyperbolic if: $b^{2}-4 a c>0$
- parabolic if: $\quad b^{2}-4 a c=0$
- elliptic if: $\quad b^{2}-4 a c<0$

Some examples

- 1D Wave equation is hyperbolic:

$$
\frac{\partial^{2} A}{\partial t^{2}}=c^{2} \frac{\partial^{2} A}{\partial x^{2}}
$$

- Diffusion equation is parabolic:

$$
\frac{\partial}{\partial t} T(x, t)=\kappa \frac{\partial^{2}}{\partial x^{2}} T(x, t)
$$

- Poisson's equation is elliptic:

$$
\frac{\partial^{2} \Phi}{\partial y^{2}}+\frac{\partial^{2} \Phi}{\partial x^{2}}=-\frac{1}{\epsilon_{0}} \rho(x, y)
$$

Initial and Boundary Conditions

- Initial Conditions
- Consider one independent variable is time and another is space in 1 dimension (say x).
- We need an initial value (at $t=0$) for all positions along x.
- Boundary conditions
- We also need values at both ends of the space domain which are known for all times.
- Driving terms
- Known values of the solution at interior points which may change with time.

Typical PDE Grid (1 space and time)

- Space stencil: h and time stencil: τ

Types of Boundary Conditions

- Dirichlet Boundary Conditions
- Also known as 'fixed'
- Values of the solution at the end points are known for all times - like for a flexible string which is clamped at both ends.
- Neumann Boundary Conditions
- Values for the derivative of the solution are known for all times - like heat energy flux at the end of a rod.
- Cauchy Boundary Condition
- BOTH the above are known - the value of the solution AND the normal derivative - liked a clamped stiff bar.

Discretization of PDEs

- Typical idea is to:
- 1. Convert all partial derivatives into finite difference equations via FDA, BDA, or CDA
- Higher order derivatives require more terms
- 2. Algebraically solve for the values of the solution at the next time (or space) step in terms of values at previous times (or spaces).
- Example: the Advection equation

$$
\frac{\partial A}{\partial t}=-c \frac{\partial A}{\partial x}
$$

Forward Time-Center Space (FTCS)

- Using forward difference method for time and center difference method for space derivative, this becomes:

$$
\frac{A_{i}^{n+1}-A_{i}^{n}}{\tau}=-c \frac{A_{i+1}^{n}-A_{i-1}^{n}}{2 h}
$$

where n is time index and i is space index.

- Now solve for the solution of A at the $n+1$ time step:

$$
A_{i}^{n+1}=A_{i}^{n}-\frac{c \tau}{2 h}\left(A_{i+1}^{n}-A_{i-1}^{n}\right)
$$

- Unfortunately FTCS is unstable for ALL values of the time step! Solution will eventually "blow up".

Lax Method

- We can improve stability by averaging for the value of A at space points before and after:
$A_{i}^{n+1}=\frac{1}{2}\left(A_{i+1}^{n}+A_{i-1}^{n}\right)-\frac{c \tau}{2 h}\left(A_{i+1}^{n}-A_{i-1}^{n}\right)$
- Courant-Friedrichs-Lewy (CFL) stability condition. " c " has units of speed, so this amounts to saying that the numerics must be able to "move" faster than the system.
- Numeric "speed" is: $\frac{h}{\tau}$

Lax-Wendroff Method

- FTCS and Lax methods are based on dropping $2^{\text {nd }}$ order terms.
- Stability and accuracy are improved by dropping $3^{\text {rd }}$ order terms.
- This makes expressions for finite differences more complicated algebraically (not shown here).
- Schemes are identical IF: $\mathcal{\tau}=\tau_{\text {max }}$
- For a large time step, Lax method grows (eventually blows up)
- For a smaller time step, Lax method decays to 0!
- Sometimes called numeric damping or viscosity.

Example: Wave Equation

- Recall wave equation for homogeneous media and no damping can be written as

$$
\frac{\partial^{2} A}{\partial t^{2}}=c^{2} \frac{\partial^{2} A}{\partial x^{2}}
$$

- Which involve $2^{\text {nd }}$ order derivatives. Prescription is the same - convert to $2^{\text {nd }}$ order finite difference equations and solve for next time step.
- up: u at time plus $1, \mathrm{u}$: current time, um: time minus 1 while t <= tstop:
t_old = t; t+=dt
if method == 's':
for i in range $(1, n)$:

$$
u p[i]=-u m[i]+2 * u[i]+C 2 *(u[i-1]-2 * u[i]+u[i+1])+d t 2 * f\left(x[i], t _o l d\right)
$$

Looping trick in Python

- Here we are looping over time (while loop), then looping over space (for loop).
- Since these are arrays, we can leverage the fast underlying C code which handles array slicing.
- Called "vectorizing" the code.
- The for loop is replaced by
up[1:n] = -um[1:n] +2*u[1:n] +C2* (u[0:n-1]-2*u[1:n] +u[2:n+1]) + dt2*f(x[1:n],t_old)
- Recall $u[1: n]$ means $u[1], u[2], u[3], \ldots, u[n]$
- This provides a HUGE speed up by pushing the looping down to the compiled C code level.
- This is almost as fast as writing the program in C.

Output with Dirichlet BCs

