Scientific Computing: Lecture 21

- Introduction to (reminder of?) matrices
- Solving systems of equations
- Matrix objects in Numpy
- Eigenvector and value problems
- Exercise: Solve 3D linear system

CLASS NOTES

* Final Project proposals due today by midnight (use HW Box folder).
\times HW09 posted later in the week
* Coming up next: Partial Differential Equations. Note: Optional for undergraduate students.

Matrices

- Matrices are mathematical objects which are handy for representing certain types of data structures.
- Represented as a 2D grid of numbers with dimensions $m \times n$.

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

- Above is a 3×3 matrix, which is said to be square ($\mathrm{m}=\mathrm{n}$)

Matrix operations

- Identity matrix: $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
- Inverse of a matrix:

$$
A^{-1} A=I
$$

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

- Determinant of a matrix: $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(a d-b c)$
- Multiplication by a scalar: $3\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}3 a & 3 b \\ 3 c & 3 d\end{array}\right)$

Systems of equations

- Consider a system of N algebraic equations with N unknown quantities.
- How do we solve for these unknowns?

$$
\begin{array}{r}
3 x-2 y=4 \\
5 x+1 y=10
\end{array}
$$

- Solve for x in terms of y using eqn 1 and substitute into eqn 2. Then solve for y and use that to solve for x.
- Can represent this system as a matrix problem.

System as a matrix equation

$$
3 x-2 y=4
$$

- In equation form, this would be

$$
5 x+1 y=10
$$

$A X=b \Rightarrow\left(\begin{array}{cc}3 & -2 \\ 5 & 1\end{array}\right)\binom{x}{y}=\binom{4}{10}$

- Now solve by multiplying inverse
- Need to be careful taking the inverse of a matrix - can lead to divide by 0 , or singularities.

$$
\begin{aligned}
A^{-1} A X & =A^{-1} b \\
I X & =A^{-1} b
\end{aligned}
$$

Eigenvalue Problems

- Mathematically, if A is a square matrix, the eigenvector (v) and associated eigenvalues (λ) are defined by:

$$
A v=\lambda v
$$

- Eigenvalues are the solutions to the characteristic polynomial produced by:

$$
\operatorname{det}(\mathbf{A}-\lambda I)=0
$$

- Many applications in science. Eigenvalues are typically parameters in a physical system: energies, natural frequencies, ...
- Commonly see these methods employed in classical and quantum mechanics, acoustics, optics,

Numpy linalg library

- numpy.linalg as several useful tools for linear algebra.
- If A is a square matrix:
- eig(A) - returns eigenvalues and vectors (can be complex) of A.
- solve(A,b) - solves (returns vector X) linear system of equations

$$
A X=b \Rightarrow
$$

$\operatorname{det}(A)$ - returns determinant of A

- $\operatorname{svd}(A)$ - returns singular value decomposition of A (way of dealing with the inverse of ill conditioned matrices)

Matrix objects in Numpy

- 2D arrays are like matrices and have many appropriate methods (trace, transpose,...)
- A special matrix object is also supplied:

$$
A=\text { matrix (a_2D_array) }
$$

- New features and methods
- Proper matrix multiplication: A*A
- Proper power of a matrix: A*2 $^{* *}$
- trace, inverse (A.I)

Exercises

- Exercise 1:
- Consider the following linear system

$$
\begin{aligned}
& -10 x+10 y=2 \\
& -10 x-y+2 z=4 \\
& 2 x-10 y-8 z=-3
\end{aligned}
$$

- Express the problem in a matrix format in Python and solve $X \quad x_{0}, y_{o}, z_{o}$

