Scientific Computing: Lecture 19

* Non-linear Regression
General ideas and warnings: Levenberg-Marquardt method
Python tools and examples.
* ‘Quality of Fit’ for non-linear regression
General thoughts
Generating estimates from curve_fit output
* Some Real World Examples

CLASS NOTES

Levenburg-Marquardt material posted soon.
Decision on Optional Components

HWO7 due tonight
Be thinking about proposals for the Final Project!
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General Ideas

* Most widely used algorithm used for non-linear fits is
called the Levenberg-Marquardt method. It is iterative.

* |ldea is compute gradient of error surface at starting point
in parameter space (initial guess of parameter values).
Then take a “step” (by adjusting parameters) “down hill”
in direction of steepest descent.

* Compute gradient at new location and repeat.

* Once gradients are small, assume
you are near minimum and shape
is parabolic (like linear case).

* Compute minimum directly as we
did with linear case.
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Warnings about non-linear fits

* Your error surface is no longer monotonic about the
global minimum — meaning there are LOCAL minima.

* Before settling on a final fit, try different starting points.
You MAY end up in a lower minimum!

* Do everything you can to start the process with
parameter values as close
as possible to the optimal
values.

Error

* Pay attention to the
parameter values —
do they make physical
sense??

* Proceed with caution! s
J.R. Gladden, Dept. of Physics, Univ. of Mississippi




Python tools for non-linear fitting

* There are several approaches, some easier to use and some
are more robust.

 curve_fit in scipy.optimize
use: fit=curve_fit (funct,xdata,ydata,pO=params0)

comments: fairly convenient and generally robust — almost
always will converge.

returns: tuple of fitted parameters, variance-covariance
(VC) matrix — more on this later.

* curve_fit() is a ‘wrapper’ function for
scipy.optimize.functions.leastsq. Using leastsq() directly will
provide MUCH more detail about the statistics of the fit.

* However, we can compute a ROUGH estimate of the quality

of the fit from the curve_fit() output...
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Example: Damped sine

* Model is a damped sine function: ¢y = Ae™ Tt Sin(wt I gb)
* Four free parameters — need at least 12 data points to fit.

Amplitude (cm)
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‘Quality of Fit’ metrics

* Linear fit has a correlation coefficient (r?)

* Can compute a similar quantity with nonlinear fits as a
ratio of the sum of squares

of residuals (SSR) to SST — Z[y’b o g]Q

total sum of squares (SST) :

N
SSR = R* = Z y; — F(x;; params)]’
1=1
* Then, r? can be computed by: 7“2 _ 1 SSR
S5l
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Confidence in parameters

* So how accurate are the fitted parameters?

* That is a complicated question. In an ideal world, you would
run lots of fits, adjusting the data within error bars, and
compute a standard deviation of the variance in the resulting
parameters for each fit.

* A simpler (and less accurate) method is to multiply the
diagonal elements of the variance-covariance (VC) matrix by
the square root of the reduced sum of squares (or reduced
chi-square).

* VC matrix returned by curve_fit is a nxn matrix for n free
parameters. Diagonals give variance of each parameter, and
off diagonals give covariance between variables — ‘How much
does a change ‘A’ effect the final value of B?’)
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Confidence in parameters

( \

aa ab ac
* |If | have three free

parameters (a,b,c): cov=| ab bb ab

 ac bc cc )

., SSR
* For N data points and m X =
parameters, the reduced SSR is N —m

* Then an approximate error of the fitted parameters are:

oa = aar/x? ; 0b=0bb\/x? ; dc=cc\/x
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Power of a Good Model

| gave a talk at a meeting several years ago in a Signal
Processing and Noise session part of which showed the
power of having a good model.

= Mechanical resonances follow a Lorentzian line shape.

icos(¢) +(1- iQ sin(¢))
A(p) = o ta,af+af

1))

" Fit resonance data with model to determine fo and Q.
= Manually pick (click) best guess for fo as starting point
(Python script).

= Test effect of fo on noise level by generating synthetic
data with Gaussian noise of x% of peak amplitude.
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Noise and frequency error: 1 peak

Noise Level (%)
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Noise and frequency error: 2 peaks
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Real World Example

* We developed a automated fitting program to extract the
center frequency of a mechanical resonance peak as the

temperature is changed over a BROAD range with around
60 temperature points.

* Features:

A single peak is extracted from a resonance spectrum.

That peak is fit with a Lorentzian for the lowest
temperature and center frequency and Q are stored.

Repeat until peak for all temperatures are fit.
Plot f(T) and 1/Q(T) and output to a text file.
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Fitting Surfaces

* It is also possible to fit data to surfaces (2 independent
variables).

* Below was part of a research project fitting hydrogen
content in metallic hydrides as function
of temperature and pressure.

* Based on modified
sigmoidals
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Exercise: Gaussian Data Fit

* Some statistical data is obtained which seems to exhibit a
Gaussian distribution. —(x — xg)?
<then:  J(x)=Aexp ( )
* The model is then: 202
where A is the amplitude, x, is the expected value and o?
is the variance.

* Generate some synthetic data with variable random
noise.

* Use curve_fit() to obtain optimal values for these
parameters. Plot data and fit.

* If time, also compute the correlation coefficient for the
fit and uncertainties in the parameters.
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