Scientific Computing: Lectures 18

* Regression (Curve Fitting)
Linear regression (fitting data)
Non-linear functions that can be linearized
Polynomial regression [polyfit() in Pyplot]
Non-linear - Levenberg-Marquardt and scipy.curve_fit()

CLASS NOTES

x HWH#7 due Friday

x Plan for rest of semester (9 lectures): Regression, Root Finding,
Linear Algebra, PDE methods, plus optional components

x Need to start thinking about Final Project. It will be due on the
Thursday of exam week. Same format as mid-term, but should
exhibit a higher degree of difficulty.

x Proposals due Thurs. April 18 in class.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Optional Component Options

* Components done in the past
Parallel Computing
GUI programming
* Some other possibilities
Time series analysis (such as Fourier analysis)

Interfacing with hardware
Data acquisition

Instrument Control
Deeper dive into modules: scipy, numpy, ...

Deeper dive into advanced visualization
(3D graphics,..)

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Linear Regression

* A common task for scientists is to compare a set of measured
data with a mathematical (theoretical) model.

* Simplest modelisaline: f(x)=mx+b

* Problem is to determine the slope and intercept which ‘best
fits” the data.

* Criteria for ‘best fit’ is that A
which minimizes the sum
X
of squares of the residualsf()
(difference between data
point and model).

* A type of ‘optimization’
problem.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Theory for linear fits

* A type of optimization problem: need to determine m
and b which minimize the sum of the squares of residuals
(R?).

* Do this by taking derivative w.r.t. m and b and setting
equal to zero. For N data points [(X,y) pairs]:

N AoR") _
R* = [y; — ma; — b o
; AoR") _

* Now solve these equations to find optimal m and b:

mzzzyz(wz_f) =7 —
2 Ti(®i — T) —

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Quality of fit

* So how do we quantify how well the model fits the data?

* One option is the standard R2
deviation (for 2 free parameters): o0 =
N — 2

* More commonly see the correlation coefficient (r?) in

which 1.00 is a perfect fit. _
Sacy — Z['xzyz — Na:y]

s2 i
e =7 S = Z[ZE? _ NCEQ]
Syy = Z[Z‘/? 4]\@2]

J.R. Glagden, Dept. of Physics, Univ. of Mississippi

r

Uncertainty in Parameters

* The quality of fit will determine the confidence
(uncertainty) in the values for the fitted parameters.

o 1 72

5m: _ |
vV Sz 0b=0 N S,

* For data shown,
m=0.853+/-0.04
b=0.402+/-0.23
r?=0.993

e Data
— Linear Fit

Y data
= N w =Y w [«)] ~ o] (o]
T T T T T T T T

2 6 8 10
X data
J.R. Gladden, Dept. of Physics, Univ. of Mississippi

o
o
N

Minimization of R?

Plot of the sum of squares of the residuals vs free parameters

shows how fit values do in fact find the minimum.

1.0

0.8

0.6 |

0.4

0.2

b=0.121
b=0.221
b=0.322
b=0.423
b=0.523
b=0.624
b=0.724

0.70

0.75

0.80

0.90

0.95 1.00

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Functions which can be linearized

* Some non-linear functions can be manipulated to take a
linear shape.

* Power Laws: take log of both sides & exponent becomes
slope, log-log plot is a line. Use

y = ca’ — In(y) = bln(x) + In(c)

* Exponentials: take log of both sides, argument becomes
r.h.s, log-linear plotis a line.

m

y = ae™" — In(y) = mx + In(a)

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Polynomials
y = a+ bx + cx® +dz’ + ...

* Can be linearized, but math is trickier.
* Pylab has function called polyfit(xdata,ydata,order) which

returns coefficients (a,b,c,..) which minimize the sum of
squares of residuals.

* order = 1: line, order = 2: quadratic, order = 3: cubic,....
* Useful when taking derivatives of actual data which are

sparse.

* For plotting, you can use the polyval() function to generate

data for the curve.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Example: 4% order polynomial

2.4 :
e o Data
52| — Polynomial Fit ot
2.0}
1.8}
8
o116
5
1.4
1.2+
1.0
0'80 1 2 3 4 5 6 7 8
X data

Non-linear Regression: General Ideas

* Most widely used algorithm used for non-linear fits is
called the Levenberg-Marquardt method. It is iterative.

* |ldea is compute gradient of error surface at starting point
in parameter space (initial guess of parameter values).
Then take a “step” (by adjusting parameters) “down hill”
in direction of steepest descent.

* Compute gradient at new location and repeat.

* Once gradients are small, assume
you are near minimum and shape
is parabolic (like linear case).

* Compute minimum directly as we
did with linear case.

f}//‘(- — 0
2SS 2
) R s 4
e 2
10 = -
1 ’ 0
J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Warnings about non-linear fits

* Your error surface is no longer monotonic about the
global minimum — meaning there are LOCAL minima.

* Before settling on a final fit, try different starting points.
You MAY end up in a lower minimum!

* Do everything you can to start the process with
parameter values as close
as possible to the optimal
values.

Error

* Pay attention to the
parameter values —
do they make physical
sense??

* Proceed with caution! s
J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Python tools for non-linear fitting

* There are several approaches, some easier to use and some
are more robust.

 curve_fit in scipy.optimize
use: fit=curve_fit (funct,xdata,ydata,pO=params0)

comments: fairly convenient and generally robust — almost
always will converge.

returns: tuple of fitted parameters, variance-covariance
(VC) matrix — more on this later.

* curve_fit() is a ‘wrapper’ function for
scipy.optimize.functions.leastsq. Using leastsq() directly will
provide MUCH more detail about the statistics of the fit.

* However, we can compute a ROUGH estimate of the quality

of the fit from the curve_fit() output...

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Example: Damped sine

* Model is a damped sine function: ¢y = Ae™ Tt Sin(wt I gb)
* Four free parameters — need at least 12 data points to fit.

Amplitude (cm)

1 1 L 1
0 2 4 6 8 10
Time (s)

J.K. Gladaen, vept. ot Pnysics, univ. of Mississippi

‘Quality of Fit’ metrics

* Linear fit has a correlation coefficient (r?)

* Can compute a similar quantity with nonlinear fits as a
ratio of the sum of squares

of residuals (SSR) to SST — Z[y’b o g]Q

total sum of squares (SST) :

N
SSR = R* = Z y; — F(x;; params)]’
1=1
* Then, r? can be computed by: 7“2 _ 1 SSR
S5l

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Confidence in parameters

* So how accurate are the fitted parameters?

* That is a complicated question. In an ideal world, you would
run lots of fits, adjusting the data within error bars, and
compute a standard deviation of the variance in the resulting
parameters for each fit.

* A simpler (and less accurate) method is to multiply the
diagonal elements of the variance-covariance (VC) matrix by
the square root of the reduced sum of squares (or reduced
chi-square).

* VC matrix returned by curve_fit is a nxn matrix for n free
parameters. Diagonals give variance of each parameter, and
off diagonals give covariance between variables — ‘How much
does a change ‘A’ effect the final value of B?’)

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Confidence in parameters

(\

aa ab ac
* |If | have three free

parameters (a,b,c): cov=| ab bb ab

 ac bc cc)

., SSR
* For N data points and m X =
parameters, the reduced SSR is N —m

* Then an approximate error of the fitted parameters are:

oa = aar/x? ; 0b=0bb\/x? ; dc=cc\/x
J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Power of a Good Model

| gave a talk at a meeting several years ago in a Signal
Processing and Noise session part of which showed the
power of having a good model.

= Mechanical resonances follow a Lorentzian line shape.

icos(¢) +(1- iQ sin(¢))
A(p) = o ta,af+af

1))

" Fit resonance data with model to determine fo and Q.
= Manually pick (click) best guess for fo as starting point
(Python script).

= Test effect of fo on noise level by generating synthetic
data with Gaussian noise of x% of peak amplitude.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Noise and frequency error: 1 peak

Noise Level (%)

n_ 11 1.‘-
4 1 1.0
] . o .] 0 i
“1 1% noise "1 10% noise .1 20% noise
n.4: 1 0.6-]
] 0.6 0_4:
02 0.4 0.2: \ l I | ‘H“‘ ‘ i
JH!H\| ekt it I |
’ TN (e |, i il
00 -0.2+
4 -0.2+
4 -0.6-
140 ' 1;5 ' |é0 " |é5 ' u';o ' |£‘55 ' 1;0 ' 1;5 " 1&0 ' Iéﬁ ' -0.4 T T T T T T T T T T T T T T T T T T T)
140 145 150 155 160 165 170 175 180 185 190 08 -——
140 145 150 155 160 165 170 175 180 185 190
Model Fitting Error with One Peak
0.025 , , ,
0.020 -
S
I
S 0.015 |-
w
>
v
&
S 0.010
(=2
[
=
0.005
0'0000 5 10 15 20

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Noise and frequency error: 2 peaks

1.0 1.
0.8 o . 0.8 . 1.0 0 .
1% noise 1 10% noise . 20% noise
0.6 X]
0.6
0.4 1
0.4
] \
0.2+ 0.2 |‘[\“ ‘] ' ‘
‘,‘ RULAL L ‘j . “HJ‘ Hli ﬂl; H\
00 e 1 l\\‘\,wf]\\w'H| y '"\“ RIEL T Y
/a |
-0.2-]] f
0.4
-0.4- 7
-0.6-
-OIDMO ‘ 1«‘15 ' 1‘50 ' 1%5 ‘ 1(‘50 ' 1é5 ‘ 1;0 ' 1;5 ‘ 1é0 ‘ 1é5 ‘ 190 '0v°140 ‘ 1‘;5 ' 1%0 ' 1&5 ‘ 1(‘50 ‘ 1(’55 ‘ 1;0 ‘ 1;5 ‘ 1;30 ‘ 1é5 190-0.0140 ' 1);5 " 1%0 ' 155 ! 1(‘;0 ' 1é5 ' 1;0 ' 1;5 ' 1&0 ' 1é5 y 190
Model Fitting Error with Two Peaks
0.07 : . .
e—e 165 kHz Peak
=—=a 160 kHz Peak
0.06
. 0.05
)
[
 0.04
w
>
U
g 0.03
=]
o
o
% 0.02
0.01
0.00

10 15
Noise Level (%)

20

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

