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Scientific	Computing:	Lectures	18
• Regression (Curve Fitting)
• Linear regression (fitting data)
• Non-linear functions that can be linearized
• Polynomial regression [ polyfit() in Pyplot ]
• Non-linear  - Levenberg-Marquardt and scipy.curve_fit()

Ò HW#7 due Friday 
Ò Plan for rest of semester (9 lectures): Regression, Root Finding, 

Linear Algebra, PDE methods, plus optional components
Ò Need to start thinking about Final Project.  It will be due on the 

Thursday of exam week. Same format as mid-term, but should 
exhibit a higher degree of difficulty.

Ò Proposals due Thurs. April 18 in class.

CLASS	NOTES
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Optional	Component	Options
• Components done in the past

• Parallel Computing

• GUI programming

• Some other possibilities

• Time series analysis (such as Fourier analysis)

• Interfacing with hardware
• Data acquisition

• Instrument Control

• Deeper dive into modules: scipy, numpy, …

• Deeper dive into advanced visualization 
(3D graphics,..)
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Linear	Regression
• A common task for scientists is to compare a set of measured  

data with a mathematical (theoretical) model.

• Simplest model is a line:

• Problem is to determine the slope and intercept which ‘best 
fits’ the data.

• Criteria for ‘best fit’ is that
which minimizes the sum
of squares of the residuals
(difference between data
point and model).  

• A type of ‘optimization’
problem.

f (x) = mx + b
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Theory	for	linear	fits
• A type of optimization problem: need to determine m

and b which minimize the sum of the squares of residuals 
(R2).
• Do this by taking derivative w.r.t. m and b and setting 

equal to zero. For N data points [(x,y) pairs]:

• Now solve these equations to find optimal m and b:
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Quality	of	fit
• So how do we quantify how well the model fits the data?
• One option is the standard 

deviation (for 2 free parameters):

• More commonly see the correlation coefficient (r2) in 
which 1.00 is a perfect fit.
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Uncertainty	in	Parameters
• The quality of fit will determine the confidence 

(uncertainty) in the values for the fitted parameters.

• For data shown, 
m=0.853+/-0.04
b=0.402+/-0.23
r2=0.993
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Minimization	of	R2
• Plot of the sum of squares of the residuals vs free parameters 

shows how fit values do in fact find the minimum.
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Functions	which	can	be	linearized
• Some non-linear functions can be manipulated to take a 

linear shape.
• Power Laws: take log of both sides & exponent becomes 

slope, log-log plot is a line.  Use 

• Exponentials: take log of both sides, argument becomes 
r.h.s,  log-linear plot is a line.

y = cxb ! ln(y) = b ln(x) + ln(c)

y = aemx ! ln(y) = mx + ln(a)
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Polynomials

• Can be linearized, but math is trickier.

• Pylab has function called polyfit(xdata,ydata,order) which 
returns coefficients (a,b,c,..) which minimize the sum of 
squares of residuals.

• order = 1: line, order = 2: quadratic, order = 3: cubic,….

• Useful when taking derivatives of actual data which are 
sparse.

• For plotting, you can use the polyval() function to generate 
data for the curve.

y = a + bx + cx2 + dx3 + ...
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Example:	4th order	polynomial
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Non-linear	Regression:	General	Ideas
• Most widely used algorithm used for non-linear fits is 

called the Levenberg-Marquardt method. It is iterative.
• Idea is compute gradient of error surface at starting point 

in parameter space (initial guess of parameter values).  
Then take a “step” (by adjusting parameters) “down hill” 
in direction of steepest descent.
• Compute gradient at new location and repeat.
• Once gradients are small, assume

you are near minimum and shape
is parabolic (like linear case).
• Compute minimum directly as we 

did with linear case.
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Warnings	about	non-linear	fits
• Your error surface is no longer monotonic about the 

global minimum – meaning there are LOCAL minima.
• Before settling on a final fit, try different starting points. 

You MAY end up in a lower minimum!
• Do everything you can to start the process with 

parameter values as close
as possible to the optimal
values.
• Pay attention to the 

parameter values –
do they make physical 
sense??
• Proceed with caution! 
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Python	tools	for	non-linear	fitting
• There are several approaches, some easier to use and some 

are more robust.

• curve_fit in scipy.optimize

• use: fit=curve_fit (funct,xdata,ydata,p0=params0)

• comments: fairly convenient and generally robust – almost 

always will converge.

• returns: tuple of fitted parameters, variance-covariance 

(VC) matrix – more on this later.

• curve_fit() is a ‘wrapper’ function for 

scipy.optimize.functions.leastsq.  Using leastsq() directly will 

provide MUCH more detail about the statistics of the fit.

• However, we can compute a ROUGH estimate of the quality 

of the fit from the curve_fit() output…
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Example:	Damped	sine
• Model is a damped sine function:
• Four free parameters – need at least 12 data points to fit.

y = Ae�⌧t sin(!t + �)
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‘Quality	of	Fit’	metrics
• Linear fit has a correlation coefficient (r2) 
• Can compute a similar quantity with nonlinear fits as a 

ratio of the sum of squares 
of residuals (SSR) to 
total sum of squares (SST) :

• Then, r2 can be computed by: 
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Confidence	in	parameters
• So how accurate are the fitted parameters? 
• That is a complicated question.  In an ideal world, you would 

run lots of fits, adjusting the data within error bars, and 
compute a standard deviation of the variance in the resulting 
parameters for each fit.
• A simpler (and less accurate) method is to multiply the 

diagonal elements of the variance-covariance (VC) matrix by 
the square root of the reduced sum of squares (or reduced 
chi-square).
• VC matrix returned by curve_fit is a nxn matrix for n free 

parameters. Diagonals give variance of each parameter, and 
off diagonals give covariance between variables – ‘How much 
does a change ‘A’ effect the final value of B?’)
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Confidence	in	parameters
• If I have three free 

parameters (a,b,c):

• For N data points and m
parameters, the reduced SSR is

• Then an approximate error of the fitted parameters are: 
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Power	of	a	Good	Model
I gave a talk at a meeting several years ago in a Signal 
Processing and Noise session part of which showed the 
power of having a good model.
§ Mechanical resonances follow a Lorentzian line shape.

§ Fit resonance data with model to determine fo and Q. 
§ Manually pick (click) best guess for fo as starting point 

(Python script).
§ Test effect of fo on noise level by generating synthetic 

data with Gaussian noise of x% of peak amplitude.
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Noise	and	frequency	error:	1	peak
1% noise 10% noise 20% noise
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Noise	and	frequency	error:	2	peaks
1% noise 10% noise 20% noise


