Scientific Computing: Lectures 18

- Regression (Curve Fitting)
 - Linear regression (fitting data)
 - Non-linear functions that can be linearized
 - Polynomial regression [polyfit() in Pyplot]
 - Non-linear Levenberg-Marquardt and scipy.curve_fit()

CLASS NOTES

- ★ HW#7 due Friday
- Plan for rest of semester (9 lectures): Regression, Root Finding, Linear Algebra, PDE methods, plus optional components
- * Need to start thinking about Final Project. It will be due on the Thursday of exam week. Same format as mid-term, but should exhibit a higher degree of difficulty.
- * Proposals due Thurs. April 18 in class.

Optional Component Options

- Components done in the past
 - Parallel Computing
 - GUI programming
- Some other possibilities
 - Time series analysis (such as Fourier analysis)
 - Interfacing with hardware
 - Data acquisition
 - Instrument Control
 - Deeper dive into modules: scipy, numpy, ...
 - Deeper dive into advanced visualization (3D graphics,..)

Linear Regression

- A common task for scientists is to compare a set of measured data with a mathematical (theoretical) model.
- Simplest model is a line: f(x) = mx + b
- Problem is to determine the slope and intercept which 'best fits' the data.
- Criteria for 'best fit' is that which minimizes the sum of squares of the residuals (difference between data point and model).
- A type of 'optimization' problem.

Theory for linear fits

- A type of optimization problem: need to determine m and b which minimize the sum of the squares of residuals (R²).
- Do this by taking derivative w.r.t. m and b and setting equal to zero. For N data points [(x,y) pairs]:

$$R^{2} = \sum_{i=1}^{N} \begin{bmatrix} y_{i} - mx_{i} - b \end{bmatrix}^{2} \qquad \frac{\partial(R^{2})}{\partial m} = 0$$
$$\frac{\partial(R^{2})}{\partial m} = 0$$

Now solve these equations to find optimal m and b:

$$m = \frac{\sum_{i} y_i (x_i - \bar{x})}{\sum_{i} x_i (x_i - \bar{x})}$$

Quality of fit

- So how do we quantify how well the model fits the data?
- One option is the standard deviation (for 2 free parameters):

$$\sigma = \sqrt{\frac{R^2}{N-2}}$$

• More commonly see the correlation coefficient (r²) in which 1.00 is a perfect fit. $S_{mi} = \sum \left[x_i u_i - N \overline{x} \right]$

$$r^2 = \frac{S_{xy}^2}{S_{xx}S_{yy}}$$

$$S_{xy} = \sum_{i} [x_i y_i - N \bar{x} \bar{y}]$$

 $S_{xx} = \sum_{i} [x_i^2 - N \bar{x}^2]$
 $S_{yy} = \sum_{i} [y_i^2 - N \bar{y}^2]$

Uncertainty in Parameters

 The quality of fit will determine the confidence (uncertainty) in the values for the fitted parameters.

Minimization of R^2

 Plot of the sum of squares of the residuals vs free parameters shows how fit values do in fact find the minimum.

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Functions which can be linearized

- Some non-linear functions can be manipulated to take a linear shape.
- **Power Laws:** take log of both sides & exponent becomes slope, log-log plot is a line. Use

$$y = cx^b \to \ln(y) = b\ln(x) + \ln(c)$$

• **Exponentials:** take log of both sides, argument becomes r.h.s, log-linear plot is a line.

$$y = ae^{mx} \to \ln(y) = mx + \ln(a)$$

Polynomials

$$y = a + bx + cx^2 + dx^3 + \dots$$

- Can be linearized, but math is trickier.
- Pylab has function called polyfit(xdata,ydata,order) which returns coefficients (a,b,c,..) which minimize the sum of squares of residuals.
- order = 1: line, order = 2: quadratic, order = 3: cubic,....
- Useful when taking derivatives of actual data which are sparse.
- For plotting, you can use the polyval() function to generate data for the curve.

Example: 4th order polynomial

Non-linear Regression: General Ideas

- Most widely used algorithm used for non-linear fits is called the Levenberg-Marquardt method. It is iterative.
- Idea is compute <u>gradient</u> of error surface at starting point in parameter space (initial guess of parameter values). Then take a "step" (by adjusting parameters) "down hill" in direction of steepest descent.
- Compute gradient at new location and repeat.
- Once gradients are small, assume you are near minimum and shape is parabolic (like linear case).
- Compute minimum directly as we did with linear case.

Warnings about non-linear fits

- Your error surface is no longer monotonic about the global minimum meaning there are LOCAL minima.
- Before settling on a final fit, try different starting points.
 You MAY end up in a lower minimum!
- Do everything you can to start the process with parameter values as close as possible to the optimal values.
- Pay attention to the parameter values – do they make physical sense??
- Proceed with caution!

Python tools for non-linear fitting

- There are several approaches, some easier to use and some are more robust.
- curve_fit in scipy.optimize
 - use: fit=curve_fit (funct,xdata,ydata,p0=params0)
 - comments: fairly convenient and generally robust almost always will converge.
 - returns: tuple of fitted parameters, variance-covariance
 (VC) matrix more on this later.
- curve_fit() is a 'wrapper' function for scipy.optimize.functions.leastsq. Using leastsq() directly will provide MUCH more detail about the statistics of the fit.
- However, we can compute a ROUGH estimate of the quality of the fit from the curve_fit() output...

Example: Damped sine

- Model is a damped sine function: $y = Ae^{-\tau t} \sin(\omega t + \phi)$
- Four free parameters need at least 12 data points to fit.

'Quality of Fit' metrics

- Linear fit has a correlation coefficient (r²)
- Can compute a similar quantity with nonlinear fits as a ratio of the sum of squares of residuals (SSR) to $SST = \sum [y_i \bar{y}]^2$ total sum of squares (SST) :

$$SSR = R^2 = \sum_{i=1}^{N} [y_i - F(x_i; \text{params})]^2$$

• Then, r² can be computed by:

$$r^2 = \sqrt{1 - \frac{SSR}{SST}}$$

Confidence in parameters

- So how accurate are the fitted parameters?
- That is a complicated question. In an ideal world, you would run lots of fits, adjusting the data within error bars, and compute a standard deviation of the variance in the resulting parameters for each fit.
- A simpler (and less accurate) method is to multiply the diagonal elements of the variance-covariance (VC) matrix by the square root of the reduced sum of squares (or reduced chi-square).
- VC matrix returned by curve_fit is a nxn matrix for n free parameters. Diagonals give variance of each parameter, and off diagonals give covariance between variables – 'How much does a change 'A' effect the final value of B?')

Confidence in parameters

- If I have three free parameters (a,b,c): $\operatorname{cov} = \begin{pmatrix} aa & ab & ac \\ ab & bb & ab \\ ac & bc & cc \end{pmatrix}$
- For N data points and m parameters, the reduced SSR is
- $\chi^2 = \frac{SSR}{N-m}$
- Then an approximate error of the fitted parameters are:

$$\delta a = aa\sqrt{\chi^2} \quad ; \quad \delta b = bb\sqrt{\chi^2} \quad ; \quad \delta c = cc\sqrt{\chi^2}$$

Power of a Good Model

I gave a talk at a meeting several years ago in a Signal Processing and Noise session part of which showed the power of having a good model.

Mechanical resonances follow a Lorentzian line shape.

$$A(f) = \frac{\frac{f}{f_0}\cos(\phi) + (1 - \frac{f}{f_0}Q\sin(\phi))}{\left(\frac{f}{f_0}\right)^2 + \left(1 - \left(\frac{f}{f_0}\right)^2\right)^2 Q^2} + a_0 + a_1f + a_2f^2$$

- Fit resonance data with model to determine *fo* and *Q*.
- Manually pick (click) best guess for *fo* as starting point (Python script).
- Test effect of *fo* on noise level by generating synthetic data with Gaussian noise of x% of peak amplitude.

Noise and frequency error: 1 peak

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Noise and frequency error: 2 peaks

J.R. Gladden, Dept. of Physics, Univ. of Mississippi