
Scientific	Computing:	Lecture	4
§Arrays and Numpy

§Vectorization of functions with arrays

§File I/O with Numpy

§ First steps in visualizing data with Pylab

§Exercises

§Read Chap. 3 and get started on Chap. 4.1 and 4.2 by next Friday

§How is the screencast working? Shared in “ScreenCasts” Box folder.

§HW00 is due tonight and HW01 will be posted.

Class Notes

Numpy array	objects
§ Python lists are flexible, but SLOW to loop over.

§ In scientific computing we often deal with looping over large
sequences of data.

§ Numpy module offers another data type (object) called an
array which is MUCH faster and more efficient.

§Plus adds many standard operations to data [sum, average,
stddev,…..]

§ Can pass an array to a regular python function and it will
return the array with the operation performed on each
element in the array -> called vectorization.

Numpy array	objects
§

§ Array sizes can not be changed, but shape can.

§ All elements must be of the same type (float, int,..)

§ Pieces can be accessed by slices like lists.

import numpy as np
a1=np.zeros(100) #creates an array of 100 zeros (floating)
I1=np.eye(10) # 10x10 array with I_{i=j}=1. & 0 otherwise.
a2=np.array([1,2,3,4,5]) #converts a list to array
x=np.linspace(0,10,100) #array of 100 floats b/t 0 & 10
x2=np.arange(0,100,0.1) #array b/t 0 & 10 in steps of 0.1
xy=np.array([1,1],[2,4],[3,9],[4,16]]) #2D array

x=xy[:,0] # x becomes the 1st column of xy (‘:’ means all)
y=xy[:,1] # First index is row #, second is column #
xy[2,1] # returns -> 9 (3rd row, 2nd column)
xy[0,1] = 4.0 # reassigns this element
xy2 = xy # just makes xy accessible by another name
xycopy = xy.copy() #makes a 2nd independent array

Array	Manipulation
• Many “matrix-like” operations are available for numpy arrays.
• Here are some common ones. See docs for more

import numpy as np
x=np.linspace(0,10,100)
y=np.sin(x)*np.exp(-x)
xy=np.array([x,y])
xy.shape #returns tuple (2,100) – 2 rows, 100 columns
xyT=xy.transpose() # inverts rows and columns
xyT.shape() #returns tuple (100,2)
y.max() #returns max value in y (y.min() also)
y.argmax() #return the index of the max value.
x.dot(y) #returns dot product of 2 1D arrays
x.tolist() # converts the array to a list object
xy.flatten() #turn multidim array into 1D array

Clipping	Arrays	– boolean
indexing
• Sometimes we need to remove data in an array above or below

some value (oultliers, extreme noise, poles in functions,…
• Can do this with Boolean indexing.
• Could also do this by looping over each value in the array, but it’s

much slower!

import numpy as np
x=np.linspace(0,10,100)
y=np.sin(x)
yPos = y[y>0]
#returns a new array with only values in y that are >0
y[y<0]=0.
#changes y so that any negative values are replaced by 0.
boolarray= y > 0
returns a boolean array (True or False) of
#length y where T or F results from the test condition

Functions	and	File	I/Owith	numpy
§ Much easier to read in / write out data to files in numpy!

§ Must be columns of numbers (can force to skip rows).

§ Example: read in a file with 2 columns of numbers, square the 2nd

column, and write both columns to a new file.

§ Regular old python functions can act on whole arrays at once rather than
just a single number at a time. Much faster than calling the function
repeatedly in a loop!

def squareit(x):
return x**2

data = np.loadtxt(‘oldfile.dat’)
x=data[:,0]
y=data[:,1]
#Pass an array to a funct and it returns an array
y2= squareit(y) # OR can just use y2=x**2
np.savetxt(‘newfile.dat’,(x,y2))

Remote	files	with	urllib2
• Neat trick is to open remote files from the internet using

module urllib2.
• urllib2.urlopen(url_path_to_file) returns a

file-like object which can then be used to read data on a
remote machine.

import urllib2 as url
import numpy as np
address='http://www.phy.olemiss.edu/~jgladden/sci_comp/
handouts/data.dat’
infile=url.urlopen(address)
x,y = np.loadtxt(infile,unpack=True)

numpy in	the	background	- pylab
§ Numpy provides a common data structure (arrays) for
almost all scientific libraries in python.

§ Pylab (matplotlib is the core graphics engine) is an
extensive plotting graphics library with numpy at it’s core.

§ Other very nice visualization packages are Chaco
(powerful interactivity with plots) and Mayavi (excellent
3D)

§ But Pylab is very user friendly yet has power for those
who need it, is very widely used and actively developed,
makes nice looking plots, and has a syntax very similar to
Matlab.

Other	options:	Chaco
• Chaco offers tools for a

HIGH degree of
interactivity with your
data.
• Cost is a rather steeper

learning curve
compared to pylab
(matplotlib).
• Nice demos with code at

the Canopy Chaco
website

Other	options:	Mayavi
• Mayvi can actually be a

stand alone package, but
uses Python under the
hood.
• Very sophisticated 3D data

visualization tools.
• Examples at:

http://docs.enthought.com/
mayavi/mayavi/

pylab Examples
from pylab import *
#numpy will automatically be
#loaded as ‘np’
x=linspace(-np.pi,np.pi,100)
y=sin(x)
plot(x,y) #plot comes from pylab
show() #displays figure

from pylab import *
x=linspace(-np.pi,np.pi,100)
y=sin(x)
y2=cos(x)
plot(x,y,’go’,ms=8)
plot(x,y2,’r-’,lw=2)
xlabel(‘X’)
ylabel(‘Y’)
title(‘My first plot!’)
show()

Plotting	data	from	a	file
• Use numpy loadtxt() to load data from a file.
• pylab.plot takes arrays as data containers
• MANY options! type help(plot) to see.

from pylab import *
data=np.loadtxt(‘mydata.dat’)
x=data[:,0]
y=data[:,1]
plot(x,y,’r-^’,ms=8)
xlabel(‘X Data’)
ylabel(‘Y Data’)
title(‘Data from a file’)
savefig(‘myplot.png’)
show()

matplotlib and	pylab
• pylab is a convenient interface to the true graphics engine –

known as matplotlib.
• Underlying matplotlib can be accessed to display plots in

GUI apps, interact with plots, …
• Community has been pushing away from “from pylab import

*” method.
• Preferred method is

import matplotlib.pyplot as plt
plt.plot(x,y,’o’)
plt.show()

plotfile:	Quick	and	dirty
• A new(ish) feature in pylab is plotfile to directly and quickly

plot data in a file.
• Source file can have labels in 1st row and multiple columns of data.

• This makes 2 plots which share a x-axis. (0,1,2) means put data in
1st (0) column on x-axis, data in 2nd (1) column on y1-axis and data
in 3rd (2) column on y2-axis. Columns are delimited by white space
(could be commas, colons,…)

• Structure of
‘mydata2.dat’ is:

from pylab import *
plotfile(‘mydata2.dat’,(0,1,2),delimiter=‘ ‘)

Time_sec Temperature_C Pressure_atm
0.0 22.8 0.80
1.0 24.9 0.95
2.0 27.2 1.34
3.0 30.3 1.58
4.0 34.6 1.89

