
Scientific	Computing:	Lecture	3
• Functions

• Random Numbers

• More I/O

• Practice Exercises

1

Ò You should be finishing Chap. 2 this week.

Ò HW00 due by midnight Friday into the Box folder

Ò You should have a functional python system now installed.

Ò See me if you have concerns or questions.

CLASS	NOTES

Function	Basics
• Functions provide a way to perform some operation. Makes

code more ‘modular’ and efficient.

• Use def keyword to define a function name and input
parameters. ‘:’ and indentation required to define the block of
code in the function

• Almost always want function to return SOMETHING to the
main program. Good programming practice to ALWAYS return
something – even just a ‘1’ of successful or ‘0’ if it failed.

#Define the function
def sum3(n1,n2,n3):

result= n1 + n2 + n3
print ‘Sum of the numbers is %2.3f’ % result
return result

#Use the function
total = sum3(10.3,20.5,5.1)

More	on	functions
§Position of arguments is important!

§ Can also pass an arbitrary number of parameters by adding a ‘*’ in front
of the parameter. All params get grouped in a tuple which can be looped
over:

def funct(a,b,x,c=1,printFlag=True):
result = a +b*x**c
if printFlag:

print ‘For a = %2.2f, b=%2.2f, x=%2.2f, and c=%2.2f \n’ \
% (a,b,x,c)

return result

def sumnums(*nums):
sum = 0
for num in nums:

sum += num
return sum

#Usage
total = sumnums(1,2,3,4,5,20,45)

more	on	functions
§Functions can be called from within other functions.

§ Can also pass a function as an argument to another function! (This is
pretty unique to Python)

§Functions can return multiple items in a tuple.

def powerlaw(x,m,b): return m*x**b
scipy.curve_fit(powerlaw,xdata,ydata,p0=(1.0,1.5))

#Look at last slide for sumnums definition
def avg(*nums):

return sumnums(nums)/len(nums)

def simplestats(*nums):
avg = avg(nums)
max=max(nums)
min=min(nums)
return avg,max,min

mystats=simplestats(10,20,8,20,24)
#OR assign the return values directly
avg1,max1,min1=simplestats(10,20,8,20,24)

Documenting	functions
• Documentation is an important (and often overlooked) part of

programming. But it’s important to people reading and using your
code (including you, one year later!)

• Docstrings are the standard method in Python.
• Users access this string by help(functionName)
• Any string right after the definition will do, but a triple quote is

convenient. It maintains the formatting when returned to the user.

def myavg(*nums):
‘’’
Function to average a sequence of numbers.
Usage: testavg = avg(70,80,75,99,98)
Input: arbitrary length series of integers or floats
Output: a float equal to the average
History: version 0.1, last updated Jan. 23, 2012 by JRG
‘’’
return sumnums(nums)/len(nums)

Practice	Excercise
• What does the following function do?

• Now alter the function to return a NEW list and leave the
original list unchanged.
• Hint: use range() function to create a list of proper length.

def squareit(somenums):
for i in range(len(somenums)):

somenums[i]=somenums[i]**2
return 0

Variable	scope	in	functions
• ‘Scope’ means where a variable is defined. Typically labeled as

‘global’ (known everywhere) or ‘local’ (only known within the
block). How and where each variable is defined is called the
“namespace”.

• Any variable defined in the ‘main’ part of the program is global,
meaning it is known inside the functions of that program.

• Variables defined inside functions are local and are not known
outside – even after the function is called.
def funct():

a= 1
print a

a=2
print a # prints ‘2’
funct()#prints ‘1’ when called
print a # prints ‘2’ again – ‘a’ is unchanged globally

Variable	scope	in	functions
• Lists and dictionaries are different.
• If they are created outside the function, then changed inside the function,

the changes are global.

def funct():
a.sort()
a.append(4)
print a

a=[3,2,1]
print a # prints [3,2,1]
funct()#prints [1,2,3,4] when called
print a # prints [1,2,3,4] -> change is global

Exercises
§ Write a function that takes in a list of numbers and returns the sum
of the numbers. Call it ‘sumnums’

§Write a second function that uses ‘sumnums’ to then compute and
return the average of those numbers.

§ Write a third function to compute the standard deviation of those
numbers
(N is total number of numbers):

§You will need to import ‘sqrt’ from the ‘math’ module.

� =

sPN
i=0(xi � x̄)2

N

Random	numbers
§ Core Python has a random number module: “random”

§ Other interesting method is ‘shuffle’ which returns the list in a random
order (like shuffling a deck of cards). Note that it actually changes the list
(‘in place’).

import random as r
r.random() # returns random number b/t [0,1)
r.uniform(a,b) #returns a random float between a and b with

equal prob.
r.gauss(mean,stddev) #returns random float with gaussian

probability centered on mean and width of stddev

mylist = [‘A’,‘K’, ‘Q’, ‘J’]
r.shuffle(mylist) -> [‘A’,’J’,‘K’, ‘Q’]

More	i/o	in	python
§ Output to screen usually handled by formatted print statements.

§ Other useful things to improve formatting output are
‘\n’ -> inserts a line break and ‘\t’ inserts a tab

§ Formatted output takes the form:
‘ Some text: %s \n a float: %2.4f \n \
integer: %i \n scientific: %2.2e’ % \
(‘hello’,3.14159, 101, 12563.667)
this prints out -
Some text: hello
a float: 3.1416
integer: 101
scientific: 1.26e+04

§ f: float, g: float with best guess on format
i: integer, s: string, e: scientific notation

file	output
§ Can also write print output to a file rather than the screen.

§ ‘open’ command creates a file object with methods to write lines to the
file and close it. It creates a text file.

§ Put in a loop to write lists of things like data to save

outfile=open(‘test.txt’,’w’) # ‘w’ to write, ‘r’ to read
outfile.write(‘First line \n second line \t %1.2f’ % (25.4))
outfile.write(‘=‘*30) #prints 30 ‘=‘ characters
x=[1,2,3,4,5]
y=[1,4,9,16,25]
for xi,yi in zip(x,y):

outfile.write(‘ \n %2.2f \t %2.2f’ % (xi,yi))
outfile.close()

file	input
§Similar procedure to read in data from a file

§ readlines method creates a list of strings with each element a line in
the file.

§ Handy string method is “split()” which splits up a string into a list of
strings split by the argument – None: any white space, ‘\t’: at tabs, ‘,’: at
commas. You get the idea…

infile=open(‘data.dat’,’r’)
lines = infile.readlines()
returns a list of each line in file
infile.close()
x=[]
y=[]
for line in lines:

if line[0] == ‘#’: continue #Comments
x.append(float(line.split()[0]))
y.append(float(line.split()[1]))

