
Scientific	Computing:	Lecture	2
• Slicing and modifying sequences (lists, tuples, strings)
• Conditionals
• Loops
• More on Functions
• Practice Exercises

1

Ò HW#00 due next Thursday (2/4).
Ò Instructions for turning in HW
Ò Read Chap. 1 by Wednesday
Ò Download class code and start altering it.

CLASS	NOTES

Turning	in	HW
• Most assignments will consist of DOCUMENTED code and output

generated by that code (plots, etc..).
• When your code is complete, save with the following filename

template: YourLastName_AssignmentNumber_FileContent.xx
• For example: Gladden_HW01_code.py and
Gladden_HW01_plot1.png

• Also save your .py file as a .pdf file.
• Upload the files into the appropriate folder in the Box share

(NOTE: I switched to Box because it has better permission
control).

• The TA for the course is Khagendra Adhikari and his email is
kadhikar@go.olemiss.edu. Khagendra will be grading HW
assignments.

Slicing	sequences
• A ‘sequence’ is a collection of objects like a list or tuple.
• Often one needs part of a sequence. This is called ‘slicing’ in python.
• Important: counting in python starts at 0 (not 1)!
• range is a convenient function to build a sequence of integers:
range(start,end,step) where step is assumed 1 if not
specified, and end is NOT included!

• Strings are considered a list of characters, so slices work for them too.

mylist=range(10,100,2) # note list ends at 98
mylist[1] #returns 12 (NOT 10)
mylist[0:3] #returns [10,12,14]
mylist[3:5] #returns [16,18]
mylist[-1] #returns 98, (-) means count from end
mylist[:5] #returns [10,12,14,16,18]
filename = ‘pressure_T298.dat’
extension = filename[-3:] #returns ‘dat’
temp = float(filename[-7:-4]) #returns 298 as a float

Combining	sequences
• Lists and tuples can be combined with a ‘+’ operator: [1,2,3] +
[4,5,6]
returns [1,2,3,4,5,6]

• Works with strings too: ‘Hello ‘+‘World’ returns ‘Hello
World’

• Lists can be modified with these methods
Say mylist=[“Billy”, ”Sue”, ”Jimmy”]
• mylist.append(item) # sticks item on the end
• mylist.insert(index,item)#inserts item at location index
• mylist[2]=‘Tommy’ #replaces the 3rd item with ‘Tommy’
• mylist.pop() # returns the last item and removes it from list
• mylist.sort() # sorts the original list (numerical or alphabetical).
• mylist.remove(item) # remove the item from the list
• mylist.index(item) # return (first) index of the item

Basic	Input	and	output	(I/O)
• Input from users:
item = raw_input(‘Enter a number: ‘)
raw_input always returns a string. OR
n=input(‘Enter a number:’)
input expects a python expression!

• print puts output to the screen

• %s: string, %i: integer, %g: float (more later).

name=‘Sarah’
age=27
string = “My name is %s and I am %i years old” % (name,age)
print string

Print in	Python	3
• print has been changed from a statement to a function in

Python 3: print “Hello World” ->
print(“Hello World”)

• New options with (optional) keyword arguments:

• print(“Something”,end=“ “) – end tells python how to

end the line. Default is a newline. This would enter a space and

the next print call would come on the same line.

• print(“Something”,file=openfile) – this would write

the string to an open file object (more on this later) rather the

screen.

• print(“Something”,”something else”, sep=“-”)
– this would separate each string with sep. This would output:

Something-something else
• Python 2.7 (which we are using) recognizes the print function,

but not the keyword arguments listed above.

Conditionals	in	Python
o Conditionals tests whether a condition is True or
False

o Use “Boolean” operators:
==, <, >, <=, >=, !=, is, is not, in

o What is “True” in Python: True, 1, any non-
empty sequence, any previously defined variable

o What is “False” : False, 0, any empty sequence
1>0
ilist=range(0,100,2)
newlist=ilist
2 in ilist
3 in ilist
newlist is ilist

Conditionals	in	Python
§ Use ‘if’ or ‘if not’ statements to make decisions:

§ Use “else if” or “elif” statements to catch alternatives

§ Note you can string conditions together with “and” or “or”.
“and” -> all conditions must be True
“or” -> any of the conditions must be True

num = 500
if num >= 1000:

print “You have a big number!”

num = 500
if num >= 1000:

print “You have a big number!”
elif num >=100 and num <= 1000:

print “You have a medium number”
else:

print “You have a small number”

“for”	Loops	in	Python
§ Loops perform repetitive tasks.

§ Most common types are “for” and “while” loops.

§ Useful function in loops is “range()” –
generates a list of numbers.

§Examples: alist=[1,2,3,4]
for i in range(len(alist)):

alist[i] = alist[i]**2
#OR use “list comprehension”
[i**2 for i in alist]

elements = [‘Au’, ‘H’, ‘He’, ‘C’]
weights = [35, 1, 2, 12]
for element in elements:

print element
for element,weight in zip(elements,weights):

print ‘Weight for %s is %i’ % (element,weight)

“While”	Loops	in	Python
§ “while” loops tests and repeats until a condition is True

§ while True > do something >
change what is tested > repeat

§Examples:

§

§Real code….

time=0
y=0
while time <= 20 and abs(y) <= 500. :

y=-9.8*time**2
print 'At time = %g, the ball fell %g m' % (time,y)
time += 1 #short for time = time +1.0

Continuous	“While”	Loops
§ Sometimes convenient to keep looping forever until some arbitrary
condition happens

§ Use “while 1, break” method (remember ‘1’ is always True)

§ while True > do something >
change what is tested > repeat

while 1:

num = eval (raw_input(‘Type a number > 0 (0 to quit) : ‘))

if num ==0:

print ‘Quitting this game …’

break

else:

print “Cube of %3.2f is %4.2f. “ % (num, num**3)

