
J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Scientific	Computing:	Lecture	1
• Introduction to course, syllabus, software
• Getting started
• Enthought Canopy, TextWrangler editor, python environment, ipython,

unix shell
• Data structures in Python
• Integers, floats, strings, lists, tuples, dictionaries, functions

1

Ò Take a look at course website ASAP. Download class codes.
Ò Read Chap. 1 by Tuesday
Ò See me if you have concerns or questions.

CLASS	NOTES

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Course	information
• Instructor: Dr. Gladden, VCRSP & Assoc. Prof. of Physics
• Office: Lyceum 313
• Email: jgladden@olemiss.edu
• Website: www.phy.olemiss.edu/~jgladden/sci_comp/

(for example code, lecture slides, assignments)
• Syllabus and course description.
• Office hours: Please schedule with Ms. Sarah Krueger

(skrueger@olemiss.edu)
• Textbook:

A Primer on Scientific Programming with Python
5th edition, Hans Petter Langtangen
This is a good resource which we will refer to regularly, but we
will not be working through it chapter by chapter. 2

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Course	Goals
• The goal of this course is to provide you with both a general

understanding of fundamental concepts in scientific computing and to
teach you the skills to implement them to solve problems in your
research.

• Scientific computing is a HUGE field with many specialized niches. We will
focus on the fundamental concepts which form the basis for these
specializations.

• We will be using the programming (scripting) language Python which has
gained popularity in the scientific community (and many other areas!)
• Scripted rather than compiled
• Cross platform, even for GUIs (windows, menus, mouse, ...)
• Easy to learn (as you will see)
• Similar syntax as Matlab, but more flexible
• Large and mature code base (libraries)

• This, however, is NOT intended to be a course in Python!
3

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Course	tools
• All software we will use in class is freely available. Links to downloads are on the

Resources page of the Course website.
• Python:
• Recent major version change (2.7 to 3.4). For compatibility we will use 2.7.
• Already installed on MacOSX and Linux. Can be downloaded for Windows.
• Another option is a "kitchen sink" python distribution with most scientific libraries

already included. A popular one is Enthought Canopy (free for basic sunscription)
• Programs are just text files. Want a code editor that has "syntax highlighting" for

python. Textwrangler is good on Mac, Notepad++ is common for Windows.
Many options -> Google! Canopy has a decent built in editor.

• Saving your class work. Several options here:
• You are encouraged to bring your own laptop!
• Some classroom computers may be available.

• A USB thumb drive (>2Gb) is probably easiest.
• You can save files to a scratch directory on the desktop and upload them to a network drive

(Box, Google Drive, DropBox, ftp server, …)
• Do NOT expect all your work to be safe on these computers! 4

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Topics	for	the	semester
• Introduction to Python (4 weeks)

• Data structures, flow control, conditionals, input/output, functions

• Graphical representation of data
• Plots with “matplotlib”, “publication quality”, multiple data sets and visualization.

• Object oriented programming

• Linear and non-linear regression (1 week)

• Numeric differentiation and Symbolic Mathematics (2 weeks)

• Numeric precision and discretization error issues & Sympy

• Numeric integration and systems of ODEs (2 weeks)

• Partial Differential Equations (1 week) – for graduate students only

• Roots of polynomials and other functions (1 week)

• Matrix algebra and manipulation (1 week)

• Parallel computing (1 week)

• Graphical User Interfaces (GUIs) [or other!] (1 week)

5

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Getting	started	with	python
• Open a terminal window (Applications -> Utilities -> Terminal)
• Type python
• Type 2+3 and press enter
• Type 212**2/350.5
• Type print “Hello World”
• print(“Hello World”)in Python 3

• Press Control-D (or exit())to exit.
• Now repeat the above commands in ipython.
• These are called the “interpreters” which execute commands line

by line. Useful for debugging or quick and dirty calculations you
don’t really need to save.

• Real work is done by typing these commands into a text file (with
“.py” extension and then having the interpreter execute the
commands line by line (or block by block) 6

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Writing	and	running	a	program
• Create a directory “MyScratch” on

the Desktop.
• Open up TextWrangler, type the

following commands in a
new window.

• Save the file as “lec01_prog1.py”
in your new directory.

• In your terminal window, type
cd ~/Desktop/MyScratch/
then ipython.

• Now execute the program with
run lec01_prog1.py

• Note the syntax highlighting
and other features of Textwrangler
and Canopy.

• Try same program in regular python
interpreter with
python lec01_prog1.py. 7

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Enthought Canopy
• Canopy is a python integrated

development environment
for scientists.

• Commercial, but freely
available to academics.
Need to create an account.

• Convenient editor and
interpreter and module
management
(installation and updates)

• Not the best editor
and can crash on more
complex programs.

• https://www.enthought.com/product/canopy/
8

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Python	Notebooks
• Interesting option for interactive work, especially for display to

an audience.
• Similar to Mathematica Notebooks – mix of code and

descriptive text.
• Run through a browser!
• ”Sessions” with formatted text, graphics, media, and live code

can be easily shared.
• Sessions can be run on remote machines through the browser
• Code is actually executed in the remote machine which could be

a large parallel machine.

9

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Data	structures	in	python
• All programming languages have various types of data

structures.
• Common to all are:
• Strings: s=“Hello World”, or s=‘Hello World’
• Integers (no decimal): n=10
• Floating point numbers or floats (decimal): mass=10.0

• Specific to python are:
• Lists: grades =
[95,”Bobby”,97.5,”Sue”,82,”Sarah”]

• Tuples: temperatures = (22.3, 23.1, 24.3)
• Dictionaries:
rgbcolors={‘red’:(1,0,0),’green’:(0,1,0),’blue’:
(0,0,1)}

• These are all “built in” data types in all python distributions
• Code examples …

10

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Modules	(Libraries)
• Much of python’s power comes from external modules or

libraries. There are literally thousands of them and counting.
• Some come with every python distribution (the standard library),

some must be downloaded and installed.
• They are loaded with the import statement in a variety of ways.
• import math or import math as m,
• from math import * or from math import sin
• Note: Trig functions are RADIAN based (not degrees).

• Each library includes a bunch of functions that will be available
after importing.

• Code examples ….

11

J.R. Gladden, Dept. of Physics, Univ. of Mississippi

Functions
• Functions are a way of performing a specific task that will need to be done

repeatedly.
• Starts with def keyword.
• NOTE: indentation IS important

in python! Each block of code
must have the same indentation.

• Rule of thumb
• After each “:”, indentation

must increase.
• Functions must be defined before

they are called.
• Generally, define all functions

in top of program OR in a separate
file (called in with an import
statement) if there are
many functions.

12

def functname(arg1,arg2,…):
python statements
to process arguments
return result

#Example: add 2 numbers
def add2(num1,num2):

sum=num1+num2
return sum

myresult = add2(3,4)
#myresult now has value of 7

