Physics 503: Scientific Computing

Homework 04
 Topic: Object Oriented Programming

Due: Friday March 2 by midnight.

Assignment

Use object oriented programming techniques to create a 3D Vector object (class). The object should initialize with a list of three components ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) which are optional (test if they are supplied, if not give default values of $[1,0,0]$). It should be called like this:
$\mathrm{v} 1=\operatorname{Vector}([2.4,3.1,0.5])$ or $\mathrm{v} 1=\operatorname{Vector}()$ for default values.
The Vector object should have the following methods: (assume v 1 is a Vector object)

1. v1.setCoords([x,y,z])
2. v1.x (as well as y and z) This would return the x component by v1.x, etc.
3. v1.mag() - return the magnitude of the vector
4. $\mathrm{v} 1 . \operatorname{dot}(\mathrm{v} 2)$ - return the scalar product of two vectors
5. v1.__add__(v2) which allows a user to add two vectors using the syntax 'vsum=v1+v2'. Add a complimentary magic method to subtract one vector from another.
Write a script which imports this class and puts it through a series of tests.

Notes and Resources

Here is a link to a pretty good and concise introduction into object oriented programming in Python. There are MANY others as well (as a google search will uncover).

http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm

Some Vector analysis

1. The magnitude of a vector is computed by $|v|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}$
2. The dot product of two vectors returns a scalar (number) is $\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=v_{1 x} v_{2 x}+v_{1 y} v_{2 y}+v_{1 z} v_{2 z}$
3. $\vec{C}=\vec{A}+\vec{B} \Rightarrow C_{x}=A_{x}+B_{x}, C_{y}=A_{y}+B_{y}, C_{z}=A_{z}+B_{z}$

For Fun (Optional)

Add a method to compute the cross (or vector) product. You could use a \qquad multiply \qquad magic method so calling v1 * v2 returns the cross product.

If you want to get fancy, you could also have a method that converts a vector from the Cartesian coordinate system to cylindrical and/or spherical (e.g components convert from [x,y,z] to [r,theta,z]).

Another fun thing would be to be able to rotate the vector with a set of Euler angles - this gets a bit complicated in 3D, but is pretty easy in 2D.

