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The Hamilton's principle approach to the calculation of vibrational modes of elastic objects 
with free boundaries is exploited to compute the resonance frequencies of a variety of 
anisotropic elastic objects, including spheres, hemispheres, spheroids, ellipsoids, cylinders, 
eggs, shells, bells, sandwiches, parallelepipeds, cones, pyramids, prisms, tetrahedra, octahedra, 
and potatoes. The paramount feature of this calculation, which distinguishes it from previous 
ones, is the choice of products of powers of the Cartesian coordinates as a basis for expansion 
of the displacement in a truncated complete set, enabling one to analytically evaluate the 
required matrix elements for these systems. Because these basis functions are products of 
powers of x, y, and z, this scheme is called the xyz algorithm. The xyz algorithm allows a 
general anisotropic elastic tensor with any position dependence and any shape with arbitrary 
density variation. A number of plots of resonance spectra of families of elastic objects are 
displayed as functions of relevant parameters, and, to illustrate the versatility of the method, 
the measured resonant frequencies of a precision machined but irregularly shaped sample of 
aluminum (called a potato) are compared with its computed normal modes. Applications to 
materials science and to seismology are mentioned. 

PACS numbers: 43.20. Ks, 43.40.At 

INTRODUCTION 

Some years ago, it was noticed by Holland • and Demar- 
est 2'3 that a very simple variational principle can be used to 
derive an eigenvalue equation for the normal-mode frequen- 
cies and eigenvectors for the vibrations of an elastic body 
with free boundaries. Subsequently Ohno 4 and others •-s 
have refined this method and its application to the resonant 
ultrasonic determination of elastic constants of materials, 
using small rectangular parallelepipedal single-crystal sam- 
ples. The idea is illustrated in Fig. 1, which shows a crystal 
suspended between two transducers, one of which excites the 
sample, and the other measures its response. Others have 
used spheres, 9'2ø again single-crystals with anisotropic elas- 
tic tensors (with orthorhombic or better symmetry). 
Spheres have the advantage that it becomes unnecessary (in- 
deed, impossible) to align the faces of the sample with crys- 
tal axes. It is the purpose of the present paper to present a 
simple computational scheme with which the free vibrations 
of all the systems that have been analyzed up to now can be 
computed, and to give results for some new systems. We 
have fabricated a sample of one of these new systems, and 
have measured and computed its resonant frequencies. 

I. THE METHOD 

A. Motivation 

It is reasonable to expect that, if one knew all the nor- 
mal-mode frequencies of an elastic object, one could deduce 
all of the relevant properties of that object, including, up to a 
common scale factor, its elastic tensor and density (includ- 
ing their spacial variations), and its shape. Whether this is 

rigorously true, even for such a simple system as a two-di- 
mensional elastic membrane, is still an unsolved problem in 
applied mathematics. TM In practice, resonant ultrasonic 
methods have been developed, and are still being refined in 
significant ways, 12 which promise to become benchmark 
procedures for measuring these material properties. In order 
to exploit these ideas, it is necessary to develop a computa- 
tional scheme to obtain the material parameters from mea- 
sured frequencies. The procedures that have been proposed 
and implemented to do this generally involve defining a fig- 
ure of merit F, such as the mean-square deviation of the 
measured from the computed resonant frequencies. Mini- 
mizing F always involves some kind of a search in the space 
of the relevant material parameters (elastic constants, den- 
sity, dimensions, shape parameters), which requires repeat- 
ed computations of the frequencies for different values of 
those parameters. Thus an essential part of a viable proce- 
dure is an accurate method to compute normal modes, 

Transducers 

Signal Generator Sample Output 

FIG. 1. Schematic resonant ultrasound setup. The sample, a rectangular 
parallepiped in this illustration, is suspended along a body-diagonal 
between transmitter and receiver transducers and the input frequency is 
swept through a given range. 
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which should be fast, since it must be performed many times. 
It is the main purpose of the present paper to present such a 
method, which works for a wide variety of systems, in a 
simple form which may easily be programmed for a comput- 
er. 

B. Hamilton's principle 

Consider an arbitrarily shaped object with (possibly po- 
sition dependent) elastic tensor C•k • and densityp with a free 
surface S surrounding a volume V. One forms the kinetic 
energy density KE = 1/2pw2uiui, the potential energy den- 
sity PE----- 1/2C,•,•u•.ju,•.•, takes their difference, and inte- 
grates to get. the Lagrangian 

L --- f, (KE - PE)dV. ( 1 ) 
Here ui is the ith component of the displacement vector, we 
use the usual summation convention, and indices following a 
comma denote differentiation with respect to that coordi- 
nate. As usual, we have assumed that the displacements' 
time dependence is d •'t. 

The following felicitous facts facilitate the computation. 
If one allows u• to vary arbitrarily in the volume Vand on the 
surface S, viz., u• -• u• + (Su•, and asks what the variation in 
L is, the answer is, as the interested reader can easily verify 
(one integration by parts is needed), 

L-•L +.tSL, (2) 

where 

6L =JL(elastic wave equation)i6uidV 
+ fs (surface traction)• 6ui dS, (3) 

plus terms of higher order in/iui. The elastic wave equation 
is 

p•o2ui + C•u•.•j = 0 (4) 
and the ith component of the surface traction vector is 

njCo•u,.•, (5) 
where {n•} is the unit outer normal to S. 

So, apparently due to a mathematical fortuity that may 
have occurred during a lapse in Murphy's vigilance, the dis- 
placement vectors u•, which are solutions to the elastic wave 
equation with free boundary conditions on S, are just those 
points in function space at which L is stationary. This fact 
suggests the following procedure for obtaining the solutions. 

C. Choice of basis 

If the computation is to be implemented on a computer, 
and is to work for a variety of shapes, one should, for reasons 
soon to become apparent, expand the displacement vector in 
the simplest possible complete set of functions. There is none 
simpler than powers of the Cartesian coordinates, so we 
choose the following set of basis functions: 

(I)•. = x'•m2 'n, (6) 

where A = (l,m,n) is the function label, a set of three non- 
negative integers. In terms of this basis we expand the displa- 
cements on a truncated set 1• [specified below in (9) ] 

ui = • a•x(l)x, i= 1,2,3. (7) 

After substituting this into the above expression for the La- 
grangian L, the latter can be written (a becomes a column 
vector) 

L = l/2w2arEa- 1/2arFa, (8) 

where Eand F are matrices whose order R is determined by 
II, which is specified by the condition 

l + rn + n<N, (9) 

viz. R = 3(N + 1)(N + 2)(N + 3)/6. [The initial factor 
of 3 here corresponds to the three coordinates x,y, and z. The 
other factors are the number of ways (9) can be realized for 
non-negative l, m, and n. ] To keep the size of the matrices 
within manageable limits we must clearly be restrained in 
our choice of N. 

The matrix E has elements 

Exix'c = (•iœ •Vf•) AtO(•) A ' dV. (10) 
If we had chosen {q)x } to be a set orthonormal with respect 
to the weight function p, then E would have been the unit 
matrix, which would have simplified some subsequent mani- 
pulations. But then we would have had to choose a different 
{q)• } for each shape, and for each different density p, which 
can be a function with arbitrary position dependence, and we 
would not be able to express the required matrix elements 
which follow in closed form. The moderate penalty exacted 
by a nondiagonal E is more than compensated by the other 
advantages concomitant with (6). 

The matrix F has elements 

Fx•x, e = C,•c/ f•,q>x.i•,•,./ dV. ( 11 ) 
Again, the volume integrals that appear here are quite trac- 
table for many shapes V if the choice (6) is made, which is 
not the case for other basis sets. 

D. Generalized eigenvalue equation 

The expression (8) for the Lagrangian ( 1 ) is stationary, 
according to (3), for the displacements u• that are solutions 
of the free-vibration problem. So the solutions may be ob- 
tained by setting the derivatives of (8) with respect to each 
of the R amplitudes a•x equal to zero. This yields the follow- 
ing matrix eigenvalue equation: 

•o•Ea = Fa. (12) 

The matrix E, although not diagonal, as it would be if we had 
chosen an orthonormal basis, is symmetric and positive defi- 
nite, and F is symmetric, so that a standard eigenvalue-ei- 
genvector subroutine package (RSG in EISPACK•3'•4 ) can 
be used to solve (12) as easily and nearly as quickly as it 
could if E had been diagonal. 

2155 J. Acoust. Soc. Am., Vol. 90, No. 4, Pt. 1, October 1991 Visscher eta/.: Vibration of elastic objects 2155 



II. EXAMPLES 

A. The potato 

For our choice of {q• } the matrix elements of E and of 
F are all of the form 

f(p,q,r) = fv xPYVZr d V, ( 13 ) 
wherep, q, and r are non-negative integers. This integral can 
be evaluated analytically for a variety of V's, including one 
which we call the potato, for want of a better name. The 
potato is constructed by choosing six different semiaxes 
(d I + ,d I _ ,d 2 + ,d 2 _ ,d 3 + ,d 3 ), and filling each octant of 
the Cartesian coordinate system (x,y,z) with a (different) 
ellipsoidal segment. Figure 2 shows a contour plot of the 
upper half of a typical potato with semiaxes given below. 

The integral (13) for this shape is just the sum over the 
octants of terms of the form 

f• (p,q,r) = {1,•r/2}d, + P+ t d2+ q+ t d3 + r+ • 

x(p- 1)!!(q- 1)]](r- 

(p + q + r + 3)!l, (14) 

which is the integral (13) on the ( + + + ) octant. (It is an 
integral representation for the beta function? ) The curly 
bracket is unity if two or three of the integers p, q, and r are 
odd; otherwise it is equal to •r/2. The double factoffal is, as 
usual, the product of alternate positive integers up to the 
argument, with (0)!! = ( - 1)!! = 1. The integrals on the 
other octants have the same form, but have a sign that de- 
pends in an obvious way on whether p, q, and r are even or 
odd. 

1. Comparison with measured potato frequencies 

Table I lists some of the computed frequencies 
( f= co/2•r) of the normal modes of an aluminum half-pota- 
to with measured density p = 2.7065 g/cm 3 and Lam6 pa- 
rameters A = 0.54X 10 n, tt = 0.27X 10 u erg/cm 3 (Pois- 
son's ratio=l/3) appropriate to AI (Ct, =•+2/•, 
C•2 = A, C** =/t, using the Voight contracted notation for 
the elastic constants), and semiaxes (d•+ ..... d•_ ) 

TABLE I. Measured and calculated AI potato frequencies (Hz). 

Mode Measured N = 6 N = 7 N = 8 N = 9 

1 9914 9925 9923 9922 9922 

2 10391 10413 10410 10409 10408 

3 13513 13484 13481 13480 13480 

4 15802 15860 15841 15837 15836 

5 17064 17116 17091 17085 17083 

6 17285 17270 17268 17268 17268 

7 17892 17903 17885 17881 17880 

8 19225 19244 19195 19184 19181 

9 20999 21060 21045 21038 21037 

10 21800 21936 21842 21815 21808 

20 28933 29258 29038 28985 28968 

30 34866 36230 35423 35077 34958 

Cray-1CPU time 3s 7s 15s 29s 
R=252 R=360 R=495 R=660 

= (2,5,4,1,3,0) in. We have adjusted •, but not Poisson's 
ratio, so that the average of the lowest ten frequencies is 
equal to that measured. Omitted are the zero frequencies, of 
which there are always six, corresponding to three transla- 
tions and three rotations. These frequencies were computed 
by solving the generalized eigenvalue problem (12) with 
N = 6, 7, 8, and 9. 

Comparison of the computed frequencies in the corre- 
sponding columns shows that N = 6 gives 1/2% or better 
accuracy for the lowest ten line s, and larger N's give much 
better accuracy. (Notice that the rows are monotonically 
decreasing sequences, as is required by Cauchy's inequali- 
ty. t6 ) Convergence is slower for this shape, which has sharp 
edges, than for smooth-surfaced objects. It should be empha- 
sized that, although this potato is elastically isotropic, it is no 
more difficult and takes little more computer time to calcu- 
late the frequencies (and eigenfunctions) for the general 
elastic potato with 21, or even 81 independent Ci•'s. 

Figure 3 is a photograph of this aluminum potato, which 
was fabricated using a numerically controlled ball mill. The 
reason that d3 _ = 0 is that the half-potato has a plane sur- 
face for measurement references, which makes it easier to 

machine. The surface quality is 32/•in. rms, which is also a 
limit on the accuracy with which it reproduces the nominal 
composite-ellipsoidal shape. 

Transducers were cemented to the flat side of this ob- 

ject, and its resonant frequencies were measured. 47 They are 
listed in the second column of Table I. The measurement 

errors, as gauged by the scatter in resonant frequencies when 
the suspension and transducer positions are changed, are 
comparable to the rms difference between measured and cal- 
culated frequencies, which is 0.16% for the lowest ten reson- 
ances. The above choice of 2 minimizes the error, and prob- 
ably amounts to as good a determination of the elastic 
constants of this AI alloy as is available. 

FIG. 2. Elevation contours of the half-potato described in the text. The bot- 
tom of this object is flat. It comprises four ellipsoidal segments. 

B. The tetrahedron, the octahedron, and the prism 

Another object of low symmetry is a tetrahedron whose 
faces comprise the yz, xz, xy planes and the plane 
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make an octahedron by piecing together eight of these 
prisms. 

The cylindrical prism bounded by the planes x = 0, 
y ---- 0, z = 0, z = c, and x/a + y/b = 1 has 

f(p,q,r) = a p* Ib q+ Icr+ •p!q!/(p + q + 2)!(r + 1), 
(16) 

and it is possible, albeit sometimes tedious and not always 
easy, to work out many other polyhedric shapes. 

FIG. 3. Photograph of the machined aluminum half-potato that was made 
by a numerically controlled ball mill and whose ultrasonic resonant fre- 
quencies were measured. This object weighs 2438.4 g, and its density is 
2.7065 g/cm •. Two 1/4 in.-diam transducers cemented to lhe fiat side are 
visible here. 

x/a + y/b + z/c = 1. This is the so-called corner prism, and 
one can easily •g work out (13) for this shape. It is 

f(p,q,r) = a • + •b q + •c r + •p!q!d/(p + q + r + 3)!. (15) 

This prism occuptes the ( + + + ) octant and, just as the 
potato was formed from eight ellipsoidal segments, one can 

I 

III. SYMMETRIES 

The potato is an object of low symmetry. If we go to the 
other extreme, the ellipsoid (which is the potato for 
di+ = d•_, i -- 1,2,3), we can speed up the calculation im- 
mensely by exploiting the threefold inversion symmetry 
x-, -- x, y-, -- y, z-, -- z, which then obtains. Now we re- 
quire that the symmetry of the crystal be orthorhombic or 
better (i.e., that off-diagonal elements C o = 0 if either iorj is 
4, 5, or 6). Then, by inspection of the PE in ( 1 ) (see Ohno n ) 
we see that, if ux is characterized by a parity triplet 
( -- 2,/•,v) [where,,/. = ( -- 1)•,p = ( -- 1)rn, v= ( -- 1)"], 
then the F' matrix only connects this u• with uv and u z hav- 
ing the following parities: 

ux:(--/ld•,v), u•:(/l,--/x,v), uz:(A,/•,--v). (17) 

Therefore, the F matrix degenerates into a block-diag- 
onal matrix with eight blocks, each characterized by one 
parity triplet, say the parity of ux. We label this parity as 
follows: 

k= I 2 3 4 5 6 7 8, 
(18} 

(--•.•,v)=(+,+,+) (+,+,--) (+,--,+) (+,--,-) (--,+,+) (-,+,--) (-,--,+) (-.--,--)- 

Because of the high symmetry the modes for each k val- 
ue (18) are uncoupled (i.e., k is a "good quantum num- 
ber"), and with N = 7, as in the potato, the largest order for 
which we have to solve the eigenvalue problem (12) is 
R = 60, in contrast to R = 360 to get the same accuracy in 
the potato, although it must be added that now we need to 
solve an eigenvalue problem for each of the eight k values. 

The layered sphere (or ellipsoid), which might be used 
as a model for oscillations of the earth, may also be studied 
using linear combinations of (14) (one term for each layer in 
the model) to represent fa (p,q,r). We have computed fre- 
quencies by this method for a model consisting of a core plus 
a crust (both elastically isotropic) and have found, by com- 
paring the results with an exact calculation using spherical 
Bessel functions and spherical harmonics (cigenfunctions of 
the elastic wave equation in spherical coordinates), that the 
accuracy of the present method is excellent even for small N 
if the mismatch of the acoustic impedances at the boundary 
is not too large. 

I 

IV. OTHER EXAMPLES WITH THREEFOLD INVERSION 
SYMMETRY 

A. The rectangular parallelepiped 

The 2d• X 2d• • 2d• rectangular parallelepiped is the 
shape considered by Demarest • and by Ohno 4 (both of 
whom used Legendre polynomials for their basis set {•, }) 
The numerical procedure to be followed here is identical to 
that for the ellipsoid. Only (14) is changed; it is now 

f(p,q,r) = 8dr v+ • d• •+ • d• •+ t/ 

(p+ l)(q+ 1)(r+ 1). (19) 

B. Tl•e cylinder 

The right circular (or elliptical) cylinder also has three- 
fold inversion symmetry. Again the numerical procedure is 
the same as before with 
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FIG. 4. Low-lying resonant frequencies of a family of cylinders. On the left 
half of the plot, the height of the cylinder is held constant at 2, and the aspect 
ratio (diameter/height) is varied linearly from 0 at the origin to I at the 
center of the plot. Then the diameter is held constant at 2 on the right half, 
and the height is decreased to 0 at the right end of the abscissa. There are a 
number of noteworthy features on this plot. First, on the left, there are 
modes whose frequencies are independent of the cylinder's diameter for any 
aspect ratio. These have frequencies that are integral multiples of 
(/z/p) •/2/2h = 1/4, where h is the height of the cylinder. They are the tor- 
sional modes •9 with h equal to multiples of half-wavelengths. Second, also 
on the left, there are two modes whose frequencies are independent of diam- 
eter as the diameter becomes small. These are the compressional "Young's 
modulus" modes with frequencies integral multiples of (E/p)•/2/ 
2h = 0.395, whereE = Young's modulus =/z(3A + 2/-0/(2 +/Z) = 5/2. 
Third, on the fight, one finds two modes with frequencies independent ofh 
even for large h. Their frequencies are close (but not within our computa- 
tional uncertainty) to being given by Jo (2•rf) = 0. Finally, on the right 
again, there are many modes whose frequencies become independent ofh as 
h becomes small. They must be describable as vibrations of an elastic mem- 
brane with free edges, and might ther_efore be analytically tractable. 

f(p,q,r) = 4rrd• p+ • d2 q+ • d3 '+ • 

X (p - 1 )!!(q - 1 )!!/(r + 1) (p + q + 
(20) 

where 2d 3 is the height and d• ,d 2 are the semiaxes of the 
elliptical cross section of the cylinder. We have computed 
the resonant frequencies for cylinders with various aspect 
ratios. The results are exhibited in Fig. 4, in which we have 
taken N = 8, unit density, and isotropic elasticity with unit 
Lam6 parameters. 

C. The spheroid 

Very similar to the cylinder spectrum is that of the 
spheroid. Here, f(p,q,r) is given by (14) for this shape, and 
its spectrum as a function of aspect ratio is shown in Fig. 5, 
with the prolate limit on the left, the sphere in the center, and 
the oblate limit on the right. Differences that stand out 
between this plot and Fig. 4 for the cylinder are: (1) the 
massive degeneracy of resonances in the spherical case and 
(2) the fact that many of the cylinder modes are rigorously 
independent of aspect ratio, not the case for the spheroid. 

FIG. 5. Like Fig. 4, but for a family of spheroids. The sphere of unit radius is 
at the center, prolate spheroids with radius proportional to the abscissa on 
the left, culminating with the needle of length 2. To the right of center are 
oblate spheroids with unit radius ending with the zero-thickness pancake. 
In contrast to the cylinder, there are no frequencies here that are trivially 
calculable. 

V. LESS SYMMETRIC OBJECTS 

Intermediate between the potato and the ellipsoid, as far 
as symmetry is concerned, are the, following objects that 
break the z-• - z symmetry while retaining the x and y sym- 
metries. Now the F matrix does not break up into eight diag- 
onal blocks, as it did in for the ellipsoid, but only into four, 
since z parity is no longer conserved. From (16), we see that 
k = 1 mixes with k = 2, k = 3 mixes with k = 4, k = 5 with 
6, and 7 with 8, so that the diagonal blocks can be labeled 
k = 1, 3, 5, and 7. 

A. The sandwich 

By the sandwich, we mean a rectangular parallelepiped 
in which there is a material discontinuity in the z direction, 
as illustrated in Fig. 6. For z < b the elastic constants and the 
density are C •, p , and for z > b they are C •-, p +. The 
changes inf(p,q,r) are trivial and obvious. Some frequencies 
for this system are illustrated in Fig. 7, in which the abscissa 

d3 
-d3 -dl 

x 

FIG. 6. A rectangular parallepipedal open-faced sandwich. Material I oc- 
cupies the part of Vwith z < b, material 2 occupies the part with z > b. The 
origin is at the center of the block. 
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FIG. 7. The k = 7 normal-mode frequencies of the object illustrated in Fig. 
6. The densities and Lain6 parameters of the two materials are related as 
discussed in the text, so that the frequencies are identical at the right and left 
extremes, where the object is all stiff and heavy versus all soft and light. It is 
interesting that the third and fourth resonances cross once, and avoid cross- 
ing twice, so that the symmetries of these modes apparently change as b 
does. Here (d• ,d:,d• ) = (0.2,0.3,0.4}, (p,A,/•) = (2,0.4.,0.4}, (10,2,2) in 
the bottom and top parts, respectively. 

is b, the z position of the interface. We have chosen the densi- 
ties and elastic constants to scale together; i.e., p + = ap - 
and C• = aC• with a = 5, so that the frequencies, when 
the block is all one material, are identical to those when it is 
all the other material, although they vary considerably for 
intermediate compositions, and the identities of some of the 
modes are exchanged in the process. 

B. The egg, the hemisphere, and the bell 

The egg is a special case of the potato with d• + = d• _, 
d2 + •---d2_ ß It has twofold inversion symmetry; whereas 
the degeneracies of the spherical case are broken completely 
by the potato (as well as by the ellipsoid), they are only 
partly broken by the egg and the spheroid. 

The hemisphere is a special case of the egg with 
d3_ = 0. The bell is a hemispheroid with a concentric he- 
mispheroidal hole in it, formed by superimposing on the 
original hemispheroid a smaller one with negative density 
and elastic constants. 

In Fig. 8 are shown resonant frequencies for a family of 
shapes: the potato, the ellipsoid, the spheroid, the sphere, the 
egg, and the hemisphere. The stations along the abscissa are 
labeled: The semiaxes characterizing the various shapes are 
listed in Table II. These parameters are linearly interpolated 
between the stations. Isotropic material with unit density 
and Lam6 parameters is again assumed. 

To illustrate the possibility of tuning the timbre of a bell 
by adjusting the bell's proportions, we show, in Fig. 9, the 
spectra of a family of bells. The abscissa is the logarithm of 
the aspect ratio 2d•/d3 +, which varies from 1/10 at the 
extreme left to unity in the middle (halfa 2:! prolate spher- 
oidal shell) to 10 at the right-hand side. Thus, on the left, we 
have a chimelike object, and on the right we have something 

FIG. 8. Frequency spectra of a number of objects in the potato family. The 
seven stations correspond to shapes as labeled, with semiaxes as given in 
Table II. The sphere frequencies agree well with those in the literature for 
these material parameters (Poisson's ratio = I/4). •ø The dimensional pa- 
rameters d I +,d• ...... ds_ are interpolated linearly between the seven sta- 
tions here. Several interesting features invite comment. First, the potato has 
no degenerate lines, because of its low symmetry, and the sphere, converse- 
ly, has few lines that are nondegenerate. The ellipsoid has no degeneracies, 
and the spheroid, the egg, and the hemisphere (all being rotationally sym- 
metric) do, but never more than doubly degenerate lines. Small deviations 
from the sphere in the egg direction do not change any of the frequencies to 
first order, becaused3+ increasesasmuchasd3 decreases, compensating 
one another as far as affecting resonant frequencies is concerned. As in sev- 
eral other figures, apparent avoided crossings on this plot should be viewed 
with suspicion because the plotting program does not interchange line iden- 
tities when physically the modes do, in fact, cross. Spectra are computed for 
241 abscissa values here and elsewhere, which sets the scale on which avoid- 
ed crossings may be spurious. 

close to a cymbal. The semiaxes of the inner surface are 0.9 of 
those for the outside surface. 

C. The cone and the pyramid 

The cone fits easily into our recipe if we take its point to 
be at z = 0, and its base to be at z = d3. Then, the cross 
sections of the cone parallel to the xy plane will be ellipses 
whose semiaxes are proportional to z. For this object, we find 

f(p,q,r) = 2•rd, P+ •d: q + Id 3 r+l 

X (p -- 1 )!!(q -- 1)!!/ 

(p + q + 2)!!(p + q + r + 3). (21) 

TABLE II. Semiaxes for the objects in Fig. 8. 

Object dl + d, d2 + d2 _ d3 + d3 _ 

i. Potato 0.25 1.0 0.5 1.25 0.75 1.5 

2. Sphere 1.0 1.0 1.0 1.0 1.0 1.0 
3. Ellipsoid 0.5 0.5 1.0 1.0 !.5 1.5 
4. Spheroid 1.0 1.0 1.0 1.0 1.5 1.5 
5. Sphere 1.0 i .0 1.0 1.0 1.0 1.0 
6. Egg !.0 1.0 1.0 1.0 1.5 0.5 
7. Hemisphere 1.0 1.0 1.0 1.0 1.0 0.0 
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log (Aspect Raho) 

FIG. 9. Spectra of an idealized family of bells. These are hemispheroidal 
shells, with inner semiaxes always 0.9 of the outer ones. The material is our 
standard isotropic elastic medium with A =/z = p = 1. The abscissa is log w 
(bell diameter/bell height). The height is kept constant at unity on the left 
half of the plot, and the diameter is kept constant on the right half. It should 
be noted that one cannot tell what a bell will sound like by examining a plot 
like this, because, for one thing, the extent to which a given mode will be 
excited depends on its amplitude at the clapper strike point. This informa- 
tion is available to us, but is more labyrinthine than the frequencies. Many 
other factors also enter, such as the Q's of the modes and their coupling to 
the air. 

FIG. 10. These are the spectra for a family of right-circular cones. The 
height h is 2 at the left extreme, and the diameter is 0. The diameter in- 
creases linearly along the abscissa while h remains constant until at the cen- 
ter the aspect ratio is 1. Then the diameter is held constant at 2 while h 
decreases to 0 at the right extreme. There are some intriguing features on 
this graph, namely that at both the needle limit and the discus limit some of 
the frequencies are independent of the vanishing dimension, leading one to 
expect that a simple analytic description should be possible. 

Likewise, the pyramid has its point at z = 0 and its 
2dr X 2d2 base at z = d 3 . For it, 

f(p,q,r) = 4dl p+ Id2q+ ld3r+ l/ 

(p+q+r+ 3)(p+ l)(q+ l). (22) 

Figure 10 displays the resonant frequencies for a cone 
made of our standard isotropic material with 
A=/•=p= 1. 

D. The cylinder with a skewed end 

A cylinder bounded by the ellipse 
(x/d•)2+(y/d2)2=l and the planes z=0 and 
z = d 3 ( 1 + ax/d 3 ) has 

f(p,q,r): 2rr(q - 1)!!d• p+ td2q+ td3r+ tg(p,q,r), (23) 
where 

g(p,q,r) = 
r-I- I 

• (Ctdl/d3)r•r!.(.p+m- 
rn=O 

X [rn!(r+ I -- rn)!(/• + q + m + 2)!!]-• 
(24) 

and 

a = tan 0 

is the slope of the top of the cylinder, which makes an angle 0 
with the horizontal. Note that this object breaks both the 
x--, -- x and z--, -- z symmetries, so the F matrix comprises 
only two diagonal blocks. 

VI. ANISOTROPY 

Since the word "anisotropic" appears in the title of this 
paper, it is fitting that we give some results for systems with 

anisotropic elastic constants. The simplest anisotropic mate- 
rial has transverse isotropy, or hexagonal symmetry. There 
are now five independent elastic constants. If the sixfold axis 
is in the z direction they are C33, C•:, C•3 = C23, C44 = C•5, 
and C66, with Ct• = C:: = Ct2 + 2C66. TO illustrate the ef- 
fects of anisotropy, we will use a set of elastic constants, 
parametrized with a number g, close to our standard isotrop- 
ic set, namely, 

C•t = C22 = 3, C33 = 3g, C•2 = C66 = 1, 

Ct3 = C23 = C44 = C55 =g, (25) 

when the symmetry axis is in the z direction. 

A. The anisotropic cone 

To illustrate the effects on the spectrum of variation of 
the magnitude of the anisotropy, we consider a right circular 
cone with unit aspect ratio. In Fig. 11 are shown the normal- 
mode frequencies of this object as functions of anisotropy. 
Here, g = 1 at the center, where the material is isotropic, and 
g increases in both directions away from the center. On the 
left half of the plot the sixfold axis is the z axis, so rotational 
symmetry about the z axis obtains, and is evidenced by many 
twofold degeneracies. On the right half the sixfold axis is the 
x axis (so the elastic constants are obtained from those above 

by interchanging I with 3 and 4 with 6). 

B. The anisotropic spheroid 

To illustrate the effects of varying the direction of ani- 
sotropy with a fixed magnitude, we consider an oblate spher- 
oid with aspect ratio 2. In Fig. 12 is shown the vibrational 
spectrum of this object as a function of angle between the 
spheroid axis and the sixfold axis, when g = 3.5. To compute 
these curves one rotates the elastic tensor Con• about the y 
axis through angles given by the value of the abscissa. In the 
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FIG. I 1. These are the spectra for a right-circular cone with unit aspect 
ratio as functions of the anisotropy parameter gdisct•ssed in the text. At the 
center (g = 1 ) the material is elastically isotropic. As one goes to the left it 
has hexagonal symmetry with the sixfold axis in the z direction, so that 
rotational symmetry about the z axis holds, and the anisotropy parameter 
increases linearly to 6 at the left extreme. As one goes to the right from the 
center the sixfold axis is in the x direction, so the system lacks rotational 
symmetry. The degeneracies characteristic of rotational symmetry disap- 
pear when one crosses the center from left to right. Another interesting 
point is that some frequencies become imaginary at g = 6. The condition 
that the energy of the system be positive definite is that det[C• [ > 0. One can 
easily compute det I ½,•1 = 4•(6 -- g), so one would expect catastrophe not 
only for g > 6, but also, not unexpectedly, for g < 0. 

Anisotropic Axis Anc•le 

FIG. 12. These are the spectra for a 2:1 oblate spheroid composed of the 
same material as that in the preceding figure, i.e., an anisotropic hexagonal 
elastic tensor, with g = 3.5. The abscissa is the angle between the axis of the 
spheroid and the sixfold axis: They are parallel on the left, perpendicular on 
the right. Most of the states are twofold degenerate when the axes are paral- 
lel: Otherwise there are no degeneracies. 

pared to other schemes that are less versatile, accurate, or 
speedy. 
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process, of course, one loses the advantages of threefold sym- 
metry of the spheroid, and the computation takes as long as 
that for the anisotropic cone. 

VII. DISCUSSION 

Our computational scheme, which we call the xyz algo- 
rithm on account of Eq. (6), its basic distinction from the 
Demarest 2 algorithm, enables the calculation of normal 
modes for many classes of systems that have not been com- 
puted before by any method (even those as simple as the 
isotropic spheroid or cone, let alone the anisotropic potato), 
and could be calculated only with great difficulty by existing 
methods. The xyz algorithm, by its nature, is no more diffi- 
cult to apply to general anisotropic systems with 21 (or even 
81, the total number of elements of Cokt) independent elastic 
constants than to isotropic ones, and allows one easily to 
compute a wider variety of shapes than any other. 

Although we have displayed only the resonant frequen- 
cies that these calculations have yielded, the same EI- 
SPACK subroutines also give the eigenvectors a•,t in (7). 
Thus the elastic displacements are known, and with enough 
persistence and determination, we could have shown vibra- 
tional shapes for each of the modes. But there are too many 
of them, so we will show none. 

We believe we have demonstrated that the xyz algo- 
rithm is capable of quickly and accurately yielding the low- 
lying resonant frequencies for a wide variety of shapes with 
inhomogeneities and few restrictions on anisotropy. But per- 
haps its greatest virtue is its extreme simplicity when corn- 

APPENDIX 

Here we give the listing of a Fortran program that will 
compute the normal-mode frequencies (and, with trivial 
modifications, the eigenfunctions, too) for all the objects we 
have discussed in this paper. This code does not exploit any 
of the symmetries of shape or elasticity tensor, and is there- 
fore much slower than one that does for objects with symme- 
tries, as is discussed in Sec. III. 

The program is named for the basss functions it uses. 

The arrays are •,lensioned 252 here, Sufficient for N $. 
DIMENSION GAMMA(252,252),E(252,252),W(252),FV(252),FW(252), 

& C(3,3,3,3), LB(252),MB(252},NB(252),IC(252) 

The data folfowing is the elastic tensor Cijkl for our standard 
isotropic matesial. Any homogeneous anisotropy can be 
describ•l by simply chang •g these data to include up to 81 
dsfierent etastsc constants, for a general substance in the 
presence of raagnetic fields. 

DATA CI3..3'0.,• .,3'0.,• .,0.,t .,0.,1.,7ø0..1.,3'0..1..3'0.,1-.0.,1.,5'0-.1 -. 
& 3'0.,3.3'0,1 ..5'0.,1.0.,1 .,3'0.,1 .,3'0.,1 .,7'0.,1.0.1 .,0,1 .,3'0.,1 .,3'0.,3 I 

DATA RHO/1J 

TWOPI-2.'ACOS(-1 .) 
PRINT*,'PLEASE INPUT NN' 
READ',NN 

The next 13 I•es assign an •ndex IG to each basis funclion (6). 
IG-0 

DO 1 I-1,3 
DO 2 L- $ ,NN•-I 
DO 2 M-1,NN.•I 
DO 2 N-I,NN*I 
IF(U•M+N.GT NN+3} GO TO 2 
IG-IG+I 

IC{IG)=[ 
LB(IG)-L-1 
MB(IG)=M-1 
NB(IG)=N-1 

2 CONTINUE 

1 CCNT NUE 

NR 1(3 
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lol 

In the next 11 statements the elements of the E and F 

matrices are computed. 
DO 3 IG=I,NR 
DO 3 JG=IG,NR 

J=IG(JG) 
LS=LB(IG)+LB(JG) 
MS=MB(IG)+MB(JG) 
NS=NB(IG)+NS(JG) 
GAMMA(IG,JG)= 

& C(I,1 ,J,1)'FLOAT(LB(IG)*LB(JG))'F(LS-2,MS,NS) 
& +C(I,2,J,2)'FLOAT(MB(IG)*MB(JG))*F(LS,MS-2,NS) 
& +C(I,3,J,3}*FLOAT(NB(IG)*NB(JG))*F(LS,MS,NS-2) 
& +(C(I,1,J,2)'FLOAT(LB(IG)'MB(JG))+C(I,2,J,1) ø 
& FLOAT(MB(IG)'LB(JG)))*F(LS- 1,MS-1,NS) 
& +(C(I,1,J,3)'FLOAT(LB(IG)*NB(JG))+C(I,3,J,1)* 
& FLOAT(NB(IG)'LB(JG)))'F(LS-I,MS,NS-1) 
& +(C(I,2.J,3)*FLOAT(MB(IG}'NB(JG))+C(I,3,J,2)* 
& FLOAT(N B(IG)*M B(JG)))* F(LS,M S-1,NS- 1) 

GAM MA(JG,IG)=GAMMA(IG,JG) 
IF(I.EQ.J) E(IG,JG)=F(LS,MS,NS) 
E(JG,IG)=E(IG,JG) 

The next line solves the eigenvalue problem (12) using the 
ElSPACK13,14 subroutine RSG. 

CALL RSG(252,NR,GAM MA,g,W,0,Z,FV,FW,IE R R) 
Now obtain the frequencies from the eigenvalues. If Cijkl is m 
1012dynes/cm 2, p is in g/cm 3, and dimensions are in cm, then 
frequencies W are in MHz. 

DO 4 t=I,NR 
W(I)=SQRT(AMAX1 (0.,W(I))tRHO)/TWOPI 

The lowest 36 frequencies are printed out: the first 6 of 
these are always zero if F is positive. 

PRINT',"FREQUENCIES FOR CORNER PRISM, NN= ',NN 
PRINT 101 ,(W(I).l=1,36) 
FORMAT(6G12.5) 

Next is a function subprogram for f(p,q,r) for the comer prism 
(Eq. 15). It is straightforward here to substitute function 

subprograms for any of the other objects we have 
consider•:t. 

FUNCTION F(IP,IQ,IR) 
DATA A,B,C/3'1J 
F=A'*(IP+ 1)'B**(IQ+I)*C**(IR+I)' 

& FACT(IP)' FACT(IQ)* FACT(IR)/FACT(IP+IQ+IR+3) 
RETURN 

Factorial subprogram fo//ows. 
FUNCTION FACT(N) 
FACT=I. 

IF(N.LT.2) RETURN 
DO 1 1=2,N 
FACT=FACT'FLOAT(I) 
RETURN 
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