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Chapter 10

4. If we make the units explicit, the function is

θ = − +4 0 30 10 3. . . rad / s  rad / s  rad / s2 2 3b g c h c ht t t

but  generally  we  will  proceed  as  shown  in  the  problem—letting  these  units  be 
understood. Also, in our manipulations we will generally not display the coefficients with 
their proper number of significant figures.

(a) Eq. 10-6 leads to

ω = − + = − +d
dt

t t t t t4 3 4 6 32 3 2c h .

Evaluating this at t = 2 s yields ω2 = 4.0 rad/s.

(b) Evaluating the expression in part (a) at t = 4 s gives ω4 = 28 rad/s.

(c) Consequently, Eq. 10-7 gives

α ω ω
avg

2 rad / s= −
−

=4 2

4 2
12 .

(d) And Eq. 10-8 gives

α ω= = − + = − +d
dt

d
dt

t t t4 6 3 6 62 .c h

Evaluating this at t = 2 s produces α2 = 6.0 rad/s2.

(e) Evaluating the expression in part (d) at t = 4 s yields α4 = 18 rad/s2. We note that our 
answer for αavg does turn out to be the arithmetic average of α2 and α4 but point out that 
this will not always be the case.
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   CHAPTER 10

40. (a) Consider three of the disks (starting with the one at point O): ⊕OO .  The first one 
(the one at point  O – shown here with the plus sign inside) has rotational inertial (see 
item (c)  in Table 10-2) I = mR2.  The next one (using the parallel-axis theorem) has 

I = mR2 + mh2

where h = 2R.  The third one has I = mR2 + m(4R)2. If we had considered five of the disks 
OO⊕OO  with the one at O in the middle, then the total rotational inertia is 

I = 5(mR2) + 2(m(2R)2 + m(4R)2).

The pattern is now clear and we can write down the total I for the collection of fifteen 
disks:

I = 15(mR2) + 2(m(2R)2 + m(4R)2 + m(6R)2+ … + m(14R)2) = mR2.

The generalization to N disks (where N is assumed to be an odd number) is
 

I =  (2N2 + 1)NmR2.

In terms of the total mass (m = M/15) and the total length (R = L/30), we obtain 

I = 0.083519ML2 ≈  (0.08352)(0.1000 kg)(1.0000 m)2 = 8.352 ×10−3 kg‧m2.

(b) Comparing to the formula (e) in Table 10-2 (which gives roughly I =0.08333 ML2), 
we find our answer to part (a) is 0.22% lower.

44. (a) Using Table 10-2(c) and Eq. 10-34, the rotational kinetic energy is

2 2 2 2 2 71 1 1 1 (500kg)(200  rad/s) (1.0 m) 4.9 10 J.
2 2 2 4

K I MRω ω π = = = = ×  

(b) We solve P = K/t (where P is the average power) for the operating time t.

t K
P

= = ×
×

= ×4 9 10 6 2 10
7

3. .J
8.0 10 W

s3

which we rewrite as t ≈ 1.0 ×102 min.
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67. From Table 10-2, the rotational inertia of the spherical shell is 2MR2/3, so the kinetic 
energy (after the object has descended distance h) is

K MR I mv= FHG
I
KJ + +1

2
2
3

1
2

1
2sphere pulley

2 2 2 2ω ω .

Since it started from rest, then this energy must be equal (in the absence of friction) to the 
potential energy  mgh with which the system started. We substitute  v/r for the pulley’s 
angular speed and v/R for that of the sphere and solve for v.

2
21 1

2 2 3

3 2

2 
1 ( / ) (2 / 3 )

2(9.8)(0.82) 1.4 m/s
1 3.0 10 /((0.60)(0.050) ) 2(4.5) / 3(0.60)

I M
r

mgh ghv
m I mr M m

−

= =
+ + + +

= =
+ × +

Chapter 11

15. (a) The derivation of the acceleration is found in §11-4; Eq. 11-13 gives

a g
I MRcom

com

= −
+1 0

2

where the positive direction is upward. We use Icom g cm= ⋅950 2 , M =120g, R0 = 0.320 
cm and g = 980 cm/s2 and obtain

( ) ( ) ( )
2 2

com 2

980| | 12.5 cm s 13 cm s .
1 950 120 0.32

a = = ≈
+

(b) Taking the coordinate origin at the initial position, Eq. 2-15 leads to y a tcom com= 1
2

2 . 
Thus, we set ycom = – 120 cm, and find

( )com
2

com

2 120cm2 4.38  s  4.4  s.
12.5 cm s

yt
a

−
= = = ≈

−

(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11: 
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( ) ( )2
com com 12.5 cm s 4.38s 54.8 cm sv a t= = − = − ,

so its linear speed then is approximately 55 cm/s.

(d) The translational kinetic energy is 

1
2

1
2

2 20120 0548 18 10mvcom
2 kg m s J= = × −. . .b gb g .

(e) The angular velocity is given by ω = – vcom/R0 and the rotational kinetic energy is

1
2

1
2

1
2

9 50 10 0548

32 10
2

0
2

5 2

3 2I I v
Rcom com
com
2 2kg m m s

m
ω = =

× ⋅

×

−

−

. .

.

c hb g
c h

which yields Krot = 1.4 J.

(f) The angular speed is 

( ) ( )3 2
com 0 0.548m s 3.2 10 m 1.7 10 rad sv Rω −= = × = ×  27 rev s= .

. 

29. (a) The acceleration vector is obtained by dividing the force vector by the (scalar) 
mass: 

 = /m = (3.00 m/s2) – (4.00 m/s2) + (2.00 m/s2).

(b) Use of Eq. 11-18 leads directly to 

 =  (42.0 kg.m2/s) + (24.0 kg.m2/s) + (60.0 kg.m2/s).

(c) Similarly, the torque is 

r Fτ = ×
rr r  = (–8.00 N.m) – (26.0 N.m) – (40.0 N.m).

(d) We note (using the Pythagorean theorem) that the magnitude of the velocity vector is 
7.35 m/s  and that  of the force is  10.8 N.   The dot  product  of  these two vectors  is  
. = – 48 (in SI units).  Thus, Eq. 3-20 yields 

θ = cos−1[−48.0/(7.35 × 10.8)] = 127°.
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33. (a) We note that 

d rv
dt

=
rr  =  8.0t  – (2.0 + 12t)

with SI units understood.  From Eq. 11-18 (for the angular momentum) and Eq. 3-30, we 
find the particle’s angular momentum is 8t2. Using Eq. 11-23 (relating its time-derivative 
to the (single) torque) then yields  = 48t .

(b) From our (intermediate) result in part (a), we see the angular momentum increases in 
proportion to t2.

64.  (a)  We choose  clockwise  as  the  negative  rotational  sense  and rightwards  as  the 
positive translational  direction.  Thus,  since this  is  the moment  when it  begins to  roll 
smoothly, Eq. 11-2 becomes v Rcom m= − = −ω ω011. .b g
This velocity is  positive-valued (rightward) since  ω is  negative-valued (clockwise) as 
shown in Fig. 11-57.

(b) The force of friction exerted on the ball of mass m is − µ kmg  (negative since it points 
left), and setting this equal to macom leads to

a gcom
2 2m s m s= − = − = −µ 0 21 9 8 21. . .b g c h

where the minus sign indicates that the center of mass acceleration points left, opposite to 
its velocity, so that the ball is decelerating.

(c) Measured about the center of mass, the torque exerted on the ball due to the frictional 
force is given by τ µ= − mgR . Using Table 10-2(f) for the rotational inertia, the angular 
acceleration becomes (using Eq. 10-45)

α τ µ µ= = − = − =
−

= −
I

mgR
m R

g
R2 5

5
2

5 0 21 9 8
2 011

472

. .
.
b gb g
b g rad s2

where  the  minus  sign  indicates  that  the  angular  acceleration  is  clockwise,  the  same 
direction as ω (so its angular motion is “speeding up’’).

(d) The center-of-mass of the sliding ball  decelerates from  vcom,0 to  vcom during time  t 
according to Eq. 2-11: v v gtcom com,0= − µ .  During this time, the angular speed of the ball 
increases (in magnitude) from zero to ω  according to Eq. 10-12:
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ω α µ= = =t gt
R

v
R

5
2

com

where we have made use of our part (a) result in the last equality. We have two equations 
involving vcom, so we eliminate that variable and find

t
v

g
= = =

2
7

2 85
7 0 21 9 8

12com,0 s.
µ

.
. .

.b g
b gb g

(e) The skid length of the ball is (using Eq. 2-15)

∆ x v t g t= − = − =com,0 m.1
2

85 12 1
2

0 21 9 8 12 8 62 2µb g b gb g b gb gb g. . . . . .

(f) The center of mass velocity at the time found in part (d) is

v v gtcom com,0 m s= − = − =µ 85 0 21 9 8 12 61. . . . . .b gb gb g
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