Physics 303 HW04_Ch13 Solutions Gladden

Chapter 13

6. The gravitational forces on m_5 from the two 5.00g masses m_1 and m_4 cancel each other. Contributions to the net force on m_5 come from the remaining two masses:

$$F_{\text{net}} = \frac{\left(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2\right) \left(2.50 \times 10^{-3} \text{ kg}\right) \left(3.00 \times 10^{-3} \text{ kg} - 1.00 \times 10^{-3} \text{ kg}\right)}{\left(\sqrt{2} \times 10^{-1} \text{ m}\right)^2}$$

= 1.67 × 10⁻¹⁴ N.

The force is directed along the diagonal between m_2 and m_3 , towards m_2 . In unit-vector notation, we have

$$\vec{F}_{\text{net}} = F_{\text{net}}(\cos 45^{\circ}\hat{i} + \sin 45^{\circ}\hat{j}) = (1.18 \times 10^{-14} \text{ N})\hat{i} + (1.18 \times 10^{-14} \text{ N})\hat{j}$$

11. If the lead sphere were not hollowed the magnitude of the force it exerts on *m* would be $F_1 = GMm/d^2$. Part of this force is due to material that is removed. We calculate the force exerted on *m* by a sphere that just fills the cavity, at the position of the cavity, and subtract it from the force of the solid sphere.

The cavity has a radius r = R/2. The material that fills it has the same density (mass to volume ratio) as the solid sphere. That is $M_c/r^3 = M/R^3$, where M_c is the mass that fills the cavity. The common factor $4\pi/3$ has been canceled. Thus,

$$M_c = \left(\frac{r^3}{R^3}\right)M = \left(\frac{R^3}{8R^3}\right)M = \frac{M}{8}.$$

The center of the cavity is d - r = d - R/2 from *m*, so the force it exerts on *m* is

$$F_2 = \frac{G(M/8)m}{(d-R/2)^2}.$$

The force of the hollowed sphere on *m* is

$$F = F_1 - F_2 = GMm \left(\frac{1}{d^2} - \frac{1}{8(d - R/2)^2} \right) = \frac{GMm}{d^2} \left(1 - \frac{1}{8(1 - R/2d)^2} \right)$$

= $\frac{(6.67 \times 10^{-11} \text{ m}^3/\text{s}^2 \cdot \text{kg})(2.95 \text{ kg})(0.431 \text{ kg})}{(9.00 \times 10^{-2} \text{ m})^2} \left(1 - \frac{1}{8[1 - (4 \times 10^{-2} \text{ m})/(2 \cdot 9 \times 10^{-2} \text{ m})]^2} \right)$
= $8.31 \times 10^{-9} \text{ N}.$

20. (a) What contributes to the GmM/r^2 force on *m* is the (spherically distributed) mass *M* contained within *r* (where *r* is measured from the center of *M*). At point *A* we see that $M_1 + M_2$ is at a smaller radius than r = a and thus contributes to the force:

$$\left|F_{\text{on }m}\right| = \frac{G\left(M_1 + M_2\right)m}{a^2}.$$

(b) In the case r = b, only M_1 is contained within that radius, so the force on *m* becomes GM_1m/b^2 .

(c) If the particle is at C, then no other mass is at smaller radius and the gravitational force on it is zero.

21. Using the fact that the volume of a sphere is $4\pi R^3/3$, we find the density of the sphere:

$$\rho = \frac{M_{\text{total}}}{\frac{4}{3}\pi R^3} = \frac{1.0 \times 10^4 \text{ kg}}{\frac{4}{3}\pi (1.0 \text{ m})^3} = 2.4 \times 10^3 \text{ kg/m}^3.$$

When the particle of mass *m* (upon which the sphere, or parts of it, are exerting a gravitational force) is at radius *r* (measured from the center of the sphere), then whatever mass *M* is at a radius less than *r* must contribute to the magnitude of that force (GMm/r^2) .

(a) At r = 1.5 m, all of M_{total} is at a smaller radius and thus all contributes to the force:

$$|F_{\text{on }m}| = \frac{GmM_{\text{total}}}{r^2} = m(3.0 \times 10^{-7} \,\text{N/kg})$$

(b) At r = 0.50 m, the portion of the sphere at radius smaller than that is

$$M = \rho\left(\frac{4}{3}\pi r^3\right) = 1.3 \times 10^3 \text{ kg.}$$

Thus, the force on *m* has magnitude $GMm/r^2 = m (3.3 \times 10^{-7} \text{ N/kg})$.

(c) Pursuing the calculation of part (b) algebraically, we find

$$\left|F_{\text{on }m}\right| = \frac{Gm\rho\left(\frac{4}{3}\pi r^{3}\right)}{r^{2}} = mr\left(6.7 \times 10^{-7} \,\frac{\text{N}}{\text{kg} \cdot \text{m}}\right).$$

22. (a) Using Eq. 13-1, we set GmM/r^2 equal to $\frac{1}{2}GmM/R^2$, and we find $r = R\sqrt{2}$. Thus, the distance from the surface is $(\sqrt{2} - 1)R = 0.414R$.

(b) Setting the density ρ equal to M/V where $V = \frac{4}{3}\pi R^3$, we use Eq. 13-19:

$$\frac{4\pi Gm\left(\frac{M}{\frac{4}{3}\pi R^3}\right)r}{3} = \frac{1}{2} GmM/R^2 \implies r = 0.500R$$

30. (a) From Eq. 13-28, we see that $v_0 = \sqrt{\frac{GM}{2R_E}}$ in this problem. Using energy conservation, we have

$$\frac{1}{2}mv_{\rm o}^2 - GMm/R_{\rm E} = -GMm/r$$

which yields $r = 4R_E/3$. So the multiple of R_E is 4/3 or 1.33.

(b) Using the equation in the textbook immediately preceding Eq. 13-28, we see that in this problem we have $K_i = GMm/2R_E$, and the above manipulation (using energy conservation) in this case leads to $r = 2R_E$. So the multiple of R_E is 2.00.

(c) Again referring to the equation in the textbook immediately preceding Eq. 13-28, we see that the mechanical energy = 0 for the "escape condition."

32. Energy conservation for this situation may be expressed as follows:

$$K_{1} + U_{1} = K_{2} + U_{2}$$
$$K_{1} - \frac{GmM}{r_{1}} = K_{2} - \frac{GmM}{r_{2}}$$

where $M = 5.0 \times 10^{23}$ kg, $r_1 = R = 3.0 \times 10^6$ m and m = 10 kg.

(a) If $K_1 = 5.0 \times 10^7$ J and $r_2 = 4.0 \times 10^6$ m, then the above equation leads to

$$K_2 = K_1 + GmM\left(\frac{1}{r_2} - \frac{1}{r_1}\right) = 2.2 \times 10^7 \text{ J}.$$

(b) In this case, we require $K_2 = 0$ and $r_2 = 8.0 \times 10^6$ m, and solve for K_1 :

$$K_1 = K_2 + GmM\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = 6.9 \times 10^7 \text{ J.}$$