Physics 303

Solution for HW03

Gladden

Chapter 7

10. The change in kinetic energy can be written as

$$
\Delta K=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=\frac{1}{2} m(2 a \Delta x)=m a \Delta x
$$

where we have used $v_{f}^{2}=v_{i}^{2}+2 a \Delta x$ from Table 2-1. From Fig. 7-27, we see that $\Delta K=(0-30) \mathrm{J}=-30 \mathrm{~J}$ when $\Delta x=+5 \mathrm{~m}$. The acceleration can then be obtained as

$$
a=\frac{\Delta K}{m \Delta x}=\frac{(-30 \mathrm{~J})}{(8.0 \mathrm{~kg})(5.0 \mathrm{~m})}=-0.75 \mathrm{~m} / \mathrm{s}^{2} .
$$

The negative sign indicates that the mass is decelerating. From the figure, we also see that when $x=5 \mathrm{~m}$ the kinetic energy becomes zero, implying that the mass comes to rest momentarily. Thus,

$$
v_{0}^{2}=v^{2}-2 a \Delta x=0-2\left(-0.75 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~m})=7.5 \mathrm{~m}^{2} / \mathrm{s}^{2},
$$

or $v_{0}=2.7 \mathrm{~m} / \mathrm{s}$. The speed of the object when $x=-3.0 \mathrm{~m}$ is

$$
v=\sqrt{v_{0}^{2}+2 a \Delta x}=\sqrt{7.5+2(-0.75)(-3.0)}=\sqrt{12}=3.5 \mathrm{~m} / \mathrm{s} .
$$

11. We choose $+x$ as the direction of motion (so \vec{a} and \vec{F} are negative-valued).
(a) Newton's second law readily yields $\vec{F}=(85 \mathrm{~kg})\left(-2.0 \mathrm{~m} / \mathrm{s}^{2}\right)$ so that

$$
F=|\vec{F}|=1.7 \times 10^{2} \mathrm{~N} .
$$

(b) From Eq. 2-16 (with $v=0$) we have

$$
0=v_{0}^{2}+2 a \Delta x \Rightarrow \Delta x=-\frac{(37 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-2.0 \mathrm{~m} / \mathrm{s}^{2}\right)}=3.4 \times 10^{2} \mathrm{~m}
$$

Alternatively, this can be worked using the work-energy theorem.
(c) Since \vec{F} is opposite to the direction of motion (so the angle ϕ between \vec{F} and $\vec{d}=\Delta x$ is 180°) then Eq. 7-7 gives the work done as $W=-F \Delta x=-5.8 \times 10^{4} \mathrm{~J}$.
(d) In this case, Newton's second law yields $\vec{F}=(85 \mathrm{~kg})\left(-4.0 \mathrm{~m} / \mathrm{s}^{2}\right)$ so that $F=|\vec{F}|=3.4 \times 10^{2} \mathrm{~N}$.
(e) From Eq. 2-16, we now have

$$
\Delta x=-\frac{(37 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-4.0 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.7 \times 10^{2} \mathrm{~m} .
$$

(f) The force \vec{F} is again opposite to the direction of motion (so the angle ϕ is again 180°) so that Eq. 7-7 leads to $W=-F \Delta x=-5.8 \times 10^{4} \mathrm{~J}$. The fact that this agrees with the result of part (c) provides insight into the concept of work.
15. Using the work-kinetic energy theorem, we have

$$
\Delta K=W=\vec{F} \cdot \vec{d}=F d \cos \phi
$$

In addition, $F=12 \mathrm{~N}$ and $d=\sqrt{(2.00)^{2}+(-4.00)^{2}+(3.00)^{2}}=5.39 \mathrm{~m}$.
(a) If $\Delta K=+30.0 \mathrm{~J}$, then

$$
\phi=\cos ^{-1}\left(\frac{\Delta K}{F d}\right)=\cos ^{-1}\left(\frac{30.0}{(12.0)(5.39)}\right)=62.3^{\circ} .
$$

(b) $\Delta K=-30.0 \mathrm{~J}$, then

$$
\phi=\cos ^{-1}\left(\frac{\Delta K}{F d}\right)=\cos ^{-1}\left(\frac{-30.0}{(12.0)(5.39)}\right)=118^{\circ}
$$

21. Eq. 7-15 applies, but the wording of the problem suggests that it is only necessary to examine the contribution from the rope (which would be the " W_{a} " term in Eq. 7-15):

$$
W_{a}=-(50 \mathrm{~N})(0.50 \mathrm{~m})=-25 \mathrm{~J}
$$

(the minus sign arises from the fact that the pull from the rope is anti-parallel to the direction of motion of the block). Thus, the kinetic energy would have been 25 J greater if the rope had not been attached (given the same displacement).
35. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the initial and final kinetic energies, we need the speeds, so

$$
v=\frac{d x}{d t}=3.0-8.0 t+3.0 t^{2}
$$

in SI units. Thus, the initial speed is $v_{i}=3.0 \mathrm{~m} / \mathrm{s}$ and the speed at $t=4 \mathrm{~s}$ is $v_{f}=19 \mathrm{~m} / \mathrm{s}$. The change in kinetic energy for the object of mass $m=3.0 \mathrm{~kg}$ is therefore

$$
\Delta K=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=528 \mathrm{~J}
$$

which we round off to two figures and (using the work-kinetic energy theorem) conclude that the work done is $W=5.3 \times 10^{2} \mathrm{~J}$.
37. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the applied force. Now, adding the triangular and rectangular "areas" in the graph (for $0 \leq x$ ≤ 4) gives 42 J for the work done.
(b) Counting the "areas" under the axis as negative contributions, we find (for $0 \leq x \leq 7$) the work to be 30 J at $x=7.0 \mathrm{~m}$.
(c) And at $x=9.0 \mathrm{~m}$, the work is 12 J .
(d) Eq. 7-10 (along with Eq. 7-1) leads to speed $v=6.5 \mathrm{~m} / \mathrm{s}$ at $x=4.0 \mathrm{~m}$. Returning to the original graph (where a was plotted) we note that (since it started from rest) it has received acceleration(s) (up to this point) only in the $+x$ direction and consequently must have a velocity vector pointing in the $+x$ direction at $x=4.0 \mathrm{~m}$.
(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed is $5.5 \mathrm{~m} / \mathrm{s}$ at $x=7.0 \mathrm{~m}$. Although it has experienced some deceleration during the $0 \leq x \leq$ 7 interval, its velocity vector still points in the $+x$ direction.
(f) Finally, using the result of part (c) and Eq. 7-10 (along with Eq. 7-1) we find its speed $v=3.5 \mathrm{~m} / \mathrm{s}$ at $x=9.0 \mathrm{~m}$. It certainly has experienced a significant amount of deceleration
during the $0 \leq x \leq 9$ interval; nonetheless, its velocity vector still points in the $+x$ direction.
41. The power associated with force \vec{F} is given by $P=\vec{F} \cdot \vec{v}$, where \vec{v} is the velocity of the object on which the force acts. Thus,

$$
P=\vec{F} \cdot \vec{v}=F v \cos \phi=(122 \mathrm{~N})(5.0 \mathrm{~m} / \mathrm{s}) \cos 37^{\circ}=4.9 \times 10^{2} \mathrm{~W} .
$$

48. (a) With SI units understood, the object's displacement is

$$
\vec{d}=\vec{d}_{f}-\vec{d}_{i}=-8.00 \hat{\mathrm{i}}+6.00 \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}} .
$$

Thus, Eq. $7-8$ gives $W=\vec{F} \cdot \vec{d}=(3.00)(-8.00)+(7.00)(6.00)+(7.00)(2.00)=32.0 \mathrm{~J}$.
(b) The average power is given by Eq. 7-42:

$$
P_{\text {avg }}=\frac{W}{t}=\frac{32.0}{4.00}=8.00 \mathrm{~W} .
$$

(c) The distance from the coordinate origin to the initial position is $d_{i}=\sqrt{(3.00)^{2}+(-2.00)^{2}+(5.00)^{2}}=6.16 \mathrm{~m}$, and the magnitude of the distance from the coordinate origin to the final position is $d_{f}=\sqrt{(-5.00)^{2}+(4.00)^{2}+(7.00)^{2}}=9.49 \mathrm{~m}$. Their scalar (dot) product is

$$
\vec{d}_{i} \cdot \vec{d}_{f}=(3.00)(-5.00)+(-2.00)(4.00)+(5.00)(7.00)=12.0 \mathrm{~m}^{2} .
$$

Thus, the angle between the two vectors is

$$
\phi=\cos ^{-1}\left(\frac{\vec{d}_{i} \cdot \vec{d}_{f}}{d_{i} d_{f}}\right)=\cos ^{-1}\left(\frac{12.0}{(6.16)(9.49)}\right)=78.2^{\circ}
$$

49. From Eq. 7-32, we see that the "area" in the graph is equivalent to the work done. We find the area in terms of rectangular [length \times width] and triangular [$\frac{1}{2}$ base \times height] areas and use the work-kinetic energy theorem appropriately. The initial point is taken to be $x=0$, where $v_{0}=4.0 \mathrm{~m} / \mathrm{s}$.
(a) With $K_{i}=\frac{1}{2} m v_{0}^{2}=16 \mathrm{~J}$, we have

$$
K_{3}-K_{0}=W_{0<x<1}+W_{1<x<2}+W_{2<x<3}=-4.0 \mathrm{~J}
$$

so that K_{3} (the kinetic energy when $x=3.0 \mathrm{~m}$) is found to equal 12 J .
(b) With SI units understood, we write $W_{3<x<x_{f}}$ as $F_{x} \Delta x=(-4.0)\left(x_{f}-3.0\right)$ and apply the work-kinetic energy theorem:
so that the requirement $K x_{f}=8.0 \mathrm{~J}$ leads to $x_{f}=4.0 \mathrm{~m}$.
(c) As long as the work is positive, the kinetic energy grows. The graph shows this situation to hold until $x=1.0 \mathrm{~m}$. At that location, the kinetic energy is

$$
K_{1}=K_{0}+W_{0<x<1}=16 \mathrm{~J}+2.0 \mathrm{~J}=18 \mathrm{~J} .
$$

