SCIENTIFIC COMPUTING: LECTURE 16

\times ODE of vectors
x Example: Projectile motion with air drag
x Systems of coupled ODEs

* Example: Spread of an epidemic

CLASS NOTES

* Midterm project due date extended until next Tuesday (3/30)
* No HW this week - finish your projects!
\times Reading for Differential Equations in Appendix B.

VECTOR QUANTITIES

* Often in science the quantities we are interested in are vectors which require a magnitude and direction.
* Typically we express a vector by it's individual components:

$$
\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)
$$

Computationally, our 1D problems now become 3 1-D problems. We just perform the calculations on each of the components individually.

2-D EXAMPLE: PROJECTILE MOTION W/ DRAG

* Restrict to 2-D, so only need x and y components of position (r) and velocity (v).
* Force of gravity is only in y direction, drag force is always opposite to velocity (x and y components constantly change).

$$
\begin{aligned}
& \frac{d v_{x}}{d t}=\frac{1}{m} F_{d x}\left(v_{x}\right) \\
& \frac{d v_{y}}{d t}=\frac{1}{m} F_{d y}\left(v_{y}\right)-g \\
& \vec{F}_{d}=-\frac{1}{2} C_{d} \rho A|\vec{v}| \vec{v}
\end{aligned}
$$

PROJECTILE WITH DRAG

SYSTEMS OF ODES

* In many 'systems' we encounter in science, the evolution of a variable depends on the values of other variables, ... which in turn depend on the value of the original variable.
* We say ODEs which describe the evolution of these variables are coupled.
x Examples:
+ Predator - prey models (Lotka-Volterra)
+ Spread of infectious diseases
+ Chemical reactions (Belousov-Zhabotinski)
+ Climate models (Lorentz)

EXAMPLE: SPREAD OF A DISEASE

* Simple model of how an infectious disease (like the flu) might spread in a 'closed' population.
* Two groups of people: number of susceptibles (S) who can catch the disease and infectives (I) which have the disease.

$$
\frac{d S}{d t}=-r S I \quad \frac{d I}{d t}=r S I-a I
$$

* The parameters r and a are characteristic of the disease (i.e. how infectious the disease is and rate of recovery respectively)
x Think about the logic behind these equations!
* Also need initial ($\mathrm{t}=0$) conditions:

$$
S(0)=S_{0}
$$

$$
I(0)=I_{0}
$$

SOLUTION USING EULER

* Need to discretize using forward Euler method.
* For time $=0$ to T in n time steps:

$$
\begin{aligned}
& \frac{S_{k+1}-S_{k}}{\Delta t}=-r S_{k} I_{k} \\
& \frac{I_{k+1}-I_{k}}{\Delta t}=r S_{k} I_{k}-a I_{k}
\end{aligned}
$$

So to compute the S and I values for the next time step $(k+1)$:

$$
\begin{aligned}
& S_{k+1}=S_{k}-\Delta t r S_{k} I_{k} \\
& I_{k+1}=I_{k}+\Delta t\left(r S_{k} I_{k}-a I_{k}\right)
\end{aligned}
$$

RESULTS

DOES IT WORK?

* Data was collected during a flu outbreak in a British boarding school (closed population) in 1978.
* This simple ODE system was used to successfully model the data by adjusting r and a values (non-linear fitting using a model rather than an analytic function).

Data from Mathematical Biology by J.D. Murray - excellent book!

STEADY-STATE SOLUTIONS

* An important question to ask is "Are there values for the variables for which the system does NOT evolve?"
* These values define steady-state solutions and define "fixed points" for the equations.
* Remember, variables are not changing if their derivatives are 0 .
* There is one fixed point for the epidemic model: $I=0$ since I is in every term on the RHS of all equations.
* Let's take a look at a model which has a more interesting fixed point.

LOTKA-VOLTERRA PREDATOR-PREY MODEL

* System of ODEs describing the change in population of predators (y) and prey (x).

$$
\frac{d x}{d t}=x(a-c y-b x) \quad \frac{d y}{d t}=-y(d-e x)
$$

* Interpretation of parameters: a - prey birth rate, b - prey death rate (other than being eaten), c - rate of consumption, d predator death rate, e - predator birth rate
* Find fixed points by setting both derivatives to 0 and solving for x and y :
There are others, see them?

$$
x_{0}=\frac{d}{e} \quad y_{0}=\frac{a}{c}-\frac{b d}{c e}
$$

Predator vs Prey

