SCIENTIFIC COMPUTING: LECTURE 11

* Numerical Integration
+ Background
+ Trapezoid
+ Simpson's 1/3 rule
+ Other methods: Monte Carlo
CLASS NOTES
* HW\#4 due today.
* You should be reading in Appendix A. 3

INTEGRATION - SOME REMINDERS...

* Integration is the inverse operation to differentiation.
* Integral of a function is a measure of the "area" bounded by the function and the horizontal axis.
* Many analytic functions can integrated analytically to get a closed form solution.
* Area above axis is (+), area below axis is (-).
$f(x) d x=$ area

SOME EXACT SOLUTIONS

$$
\begin{array}{r}
\int x^{m} d x= \\
\frac{1}{m+1} x^{m+1} \quad \int \frac{1}{x} d x \\
\\
\iint_{0}^{\pi} \sin (x) d x=-\cos (x) d x=2.00 \\
\int_{a}^{b} x^{m} d x=\left[\frac{1}{m+1} x^{m+1}\right]_{a}^{b}
\end{array}
$$

NUMERICAL APPROXIMATION

* On a computer, integration becomes summation.
* Numerical integration is also called quadrature.
* Break integral range into multiple "panels" with a simple shape.
\times Add areas of all panels to get total area.
* Newton-Cotes Method: top of each panel defined by a polynomial of order n.
$+n=1$: line - Trapeziod method
+ n=2: parabola - Simpson's 1/3
+ n=3: cubic - Simpson's 3/8
\times For many applications, Trapezoid method is good enough.

TRAPEZOID METHOD

* Geometry of panels is trapezoidal.
* Area of a trapezoid:

$$
[f(a+h)+f(a)] \frac{h}{2}
$$

* Total area for N panels:

$$
\begin{aligned}
I & =I_{1}+I_{2}+I_{3}+\ldots+I_{N} \\
& =\sum_{i=1}^{N-1}[f(a+i h)+f(a+(i+1) h)] \frac{h}{2}
\end{aligned}
$$

TRAPEZOID METHOD - THE CODE

```
def trap(f,xmin,xmax,numPanels):
    Isum=0.
    h=(xmax-xmin)/float(numPanels)
    for i in range(numPanels):
        x=xmin+i*h
        Isum+=(f(x+h)+f(x))*h/2 .
    return Isum
```

* Trapezoid error is of order $\sim h^{2}$

Trapezoid method is can be coupled with Richardson extrapolation to improve error further

+ known as the Romberg method

SIMPSON'S 1/3 RULE

* Panel cap is a quadratic curve rather than a straight line.

$$
\int_{a}^{b} f(x) d x \simeq\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \frac{h}{3}
$$

* Requires evaluation at 3 points rather than 2.
\times Error is of order $\sim h^{4}$.

SIMPSON'S 1/3 CODE

```
def simp13(f,xmin,xmax,numPanels):
    I sum=0.
    h=(xmax-xmin)/float(numPanels)
    for i in range(0,numPanels,2):
        x=xmin+i*h
        Isum+=(f(x)+4*f(x+h)+f(x+2*h))*h/3
    return Isum
```


EXERCISE: TRAPEZOID ERROR

* Use the trapezoid method to estimate the integral:

$$
\int_{0}^{1} e^{-x} d x=-\left[e^{-1}-e^{0}\right]=0.632120558829
$$

* Compute and plot the \% error vs number of panels.

