Development of LBNE Photon Detector Front End Electronics
John ANDERSON, Patrick DE LURGIO, Zelimir DJURCIC, Gary DRAKE, Andrew KREPS, Michael OBERLING, Himansu SAHOO
High Energy Physics Division, Argonne National Laboratory
9700 South Cass Avenue, Lemont, IL 60439, USA

- Long-Baseline Neutrino Experiment (LBNE) is a comprehensive program to measure neutrino oscillations.

- LBNE will consist of:
 - an intense neutrino beam (≥1.2 MW) from Fermilab to Sanford underground lab 1500 km away.
 - a near detector systems at Fermilab.
 - a 34 kt liquid argon time-projection chamber (TPC) at Sanford Laboratory at 4850 foot depth.

- Physics Goals
 - LBNE will discover and characterize CP Violation in the neutrino sector.
 - resolve the neutrino mass hierarchy unambiguously.
 - precision measurements of oscillation parameters.
 - precision measurements of neutrino interactions with matter.
 - search for new physics (non-standard interactions, sterile neutrinos).
 - search for nucleon decays and set limits models of Grand Unification Theories.
 - detection of neutrinos from core collapse.

- Photon detection technique
 - wave-length shifter coated cast acrylic bars 25 mm x 6 mm x 1.05 m bars
 - 4 bars per paddle with SiPM readout
 - 3 SiPMs (channels) per bar
 - 20 photon detector units in a TPC APA
 - 9600 channels for far detector

- A new high-performance data acquisition system - the Silicon Photomultiplier Signal Processor (SSP) - has been developed for reading out the photon detectors as part of the R&D for the Far Detector of LBNE.

- An SSP consists of 12 readout channels packaged in a self-contained 1U module.
 - Each channel consists of a differential voltage amplifier
 - 14-bit, 150 MSPS ADC for digitizing charge signals from SiPMs with no dead time.
 - separate adjustable bias for SiPMs.
 - The data streams from the ADCs are received by a Xilinx Artix-7 FPGA that performs signal processing algorithms on the sampled waveforms to obtain timing across the system to better than 3 nS resolution.
 - Xilinx Zynq FPGA is used for read-out and slow control over Gigabit Ethernet or USB.

- Key SSP features:
 - single p.e. resolution capable.
 - 14-bit dynamic range (1.8 V full range).
 - timing resolution ≤ 5 ns.
 - data buffer length 13 μs: enables late light detection.
 - individual channel voltage biasing.
 - charge injection to calibration.
 - system highly configurable.

- LBNE Far Detectors: two 5 kt fiducial volume liquid argon TPCs are shown.

- Liquid argon TPC parameters
 - cosmic events ~0.1 Hz, beam events ~9 kHz.
 - drift = 3.5 m, field: 500 V/cm.
 - readout: x, y, z, pitch: 5 mm, wrapped wires.
 - Max Yield: ~9000 e/mm/ MIP, 10000 ph/mm/MIP.

- Scintillation light characteristics
 - LAr scintillation light has wavelength of 128 nm.
 - 1/3 of light emitted promptly within 6 ns, 2/3 comes later with time constant 1.6 μs.
 - Long attenuation length in argon but 90 cm Raleigh scattering length at λ=128 nm.

- Motivation for scintillation light detection
 - Although the TPC provides unprecedented spatial resolution it cannot provide an absolute event location by itself.
 - The detection of scintillation light in coincidence with ionizing tracks in a LAr TPC can be used as an absolute time measurement (t0) to determine spatial location of the ionizing event.
 - The scintillation light may be used to provide additional information i.e.,
 - Determine if events originate within fiducial volume of the detector.
 - Correct for energy loss during drift.
 - Provide trigger for non-beam events.
 - Improve reconstruction of overlapping events.

- Summary and Future Prospects
 - We have developed the Silicon Photomultiplier Signal Processor (SSP) to be used for reading out the photon detectors of the LBNE.
 - by measuring the time of arrival of the photons, as well as the pulse height, the PD system can provide a “time zero” reference for the reconstruction of the event, as well as help identify the spatial coordinates of the event by triangulating between different photon detector elements in the detector.
 - in addition the detection of scintillation light may be used as a trigger for the TPC.
 - measurement of the “late” light that arises from triplet states, which can be useful as a particle identification tool.
 - these physics related features of photon detection system with SSP board will be tested in 35-ton LBNE prototype being built at Fermilab.

We acknowledge the support of DOE Office of High Energy Physics in this project.