RFOFO Ring Status in GEANT

R. Godang, D. Summers, L. Cremaldi (Mississippi)
R. Raja, S. Geer, Z. Usubov (Fermilab)
R. Palmer, R. Fernow, S. Berg, J. Gallardo (BNL)

- RFOFO Ring Overview
- Motivation
- GEANT Simulation
 - Geometry and Material
 - Constant Magnetic Fields
 - GRID Magnetic Fields
- Interpolation Method
- Magnetic Fields Study
- Conclusions

MUCCOL Meeting
October 21, 2002
Berkeley Lab, CA
RFOFO Ring Overview

- We simulate the RFOFO ring based on ICOOL version 2.40 with useful information from Bob Palmer and Rick Fernow.

- The ring is about 33 m in circumference. It has 12 cells and each cell is 2.75 m long.

- The overall dipole field for bending is 0.125 T.
RFOFO Ring Overview

- 1 cell = half wedge + 6 RFs + half wedge
 The alternating solenoid coils are located outside pillbox RF cavities

- RF freq. = 201.25 MeV; Gradient = 16 MV/m

- The wedge is made of liquid hydrogen with a full angle $\alpha = 77^\circ$ at the vertex
Motivations

- ICOOL works in different ways as GEANT
 In a straight channel ICOOL models
 the solenoid as a current sheet without any
 direct rotation as in GEANT

- GEANT is able to rotate the field for a ring
 then do a linear GRID map interpolation
 I will show it later

- GEANT should tell us the exact coil angle
 and tilts that generate the required fields

- It always good to have a redundant simulation
 for a crucial part of an experiment
Geometry and Material

- Geometry and material in GEANT = ICOOL

<table>
<thead>
<tr>
<th>ARTE</th>
<th>PALMER RFOFO RING SCHEME 28/08/02</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applied Constant Field Into One Cell</td>
</tr>
<tr>
<td></td>
<td>GEANT Rotates the Field by Itself</td>
</tr>
<tr>
<td></td>
<td>Turn Off RF Cavities and Wedges</td>
</tr>
</tbody>
</table>

Rotated Constant Field By = 0.1250 T
• **Applied Constant Fields:**

![Graphs showing vertex positions of single particles with statistical data](image-url)
Can GEANT rotate the fields by itself?

- Applied constant fields (0.125 Tesla) into one cell
- Let GEANT rotate the fields by itself
- Locate μ^+ (200 MeV/c) at $z=531$ cm

\Rightarrow The μ^+ still follow a closed orbit!
Did GEANT Rotate the Fields Correctly?

- Locate μ^+ at $z=300$ cm and $x=200$ cm

\Rightarrow Indeed μ^+ does not follow a closed orbit!

Constant Field $B_y = 0.1250$ T
GEANT Rotates the Field by Itself
Turn Off RFs and Wedges

Applied Constant Fields
GRID Magnetic Fields

- We implemented GRID map into GEANT then do interpolation ➞ GRID Fields Map
- GRID fields map along arc length:

![Diagram showing magnetic fields along arc length](image-url)
GRID Magnetic Fields

- Fields map output from GEANT is very well match with BIOT fields \(\Rightarrow \) a cross check

- GRID fields map along axis:

![Diagram of magnetic fields](image-url)

MUCOOL Meeting 10 October 2002
Interpolation Method

- We do check the interpolation method when GEANT read the GRID map \(\Rightarrow \) Fields map

- Fractional difference of True - GRID Fields

\[db_x = \frac{(B_X - b_X)}{B_X}; \quad db_y = \frac{(B_Y - b_Y)}{B_Y}; \quad db_z = \frac{(B_Z - b_Z)}{B_Z} \]
Magnetic Fields Study

- BIOT-Savart fields is done by Lucien and Don
- BSHEET (ICOOL) is done by Rick and Juan
- Bx fields comparison between BSHEET and BIOT (Integral Method) \(\implies\) GEANT
Bs Fields Comparison of BSHEET-BIOT

- BSHEET-BIOT Bs fields match very well
By Fields comparison of BSHEET-BIOT

- There is still a large discrepancy of B_y that need to understand \rightarrow in progress
Conclusions

- GEANT rotates the fields map correctly. It is very good feature from GEANT.

- GEANT produces consistent fields map output by doing a correct interpolation routine.

- The CODE has installed into CVS repository in Fermilab, thanks to Raja for his help.

- The discrepancy between BIOT-BSHEET in By fields is under studying.

- We are studying the RFOFO RF tuning.