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Least Squares Fitting
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A mathematical procedure for finding the best-fitting curve to a given set of points by minimizing
the sum of the squares of the offsets ("the residuals") of the points from the curve. The sum of the
squares of the offsets is used instead of the offset absolute values because this allows the residuals
to be treated as a continuous differentiable quantity. However, because squares of the offsets are
used, outlying points can have a disproportionate effect on the fit, a property which may or may not
be desirable depending on the problem at hand.
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In practice, the vertical offsets from a line (polynomial, surface, hyperplane, etc.) are almost always
minimized instead of the perpendicular offsets. This provides a fitting function for the independent
variable X that estimates y for a given x (most often what an experimenter wants), allows
uncertainties of the data points along the x- and y-axes to be incorporated simply, and also provides
a much simpler analytic form for the fitting parameters than would be obtained using a fit based on
perpendicular offsets. In addition, the fitting technique can be easily generalized from a best-fit line
to a best-fit po/ynomial when sums of vertical distances are used. In any case, for a reasonable
number of noisy data points, the difference between vertical and perpendicular fits is quite small.

The linear least squares fitting technique is the simplest and most commonly applied form of linear
regression and provides a solution to the problem of finding the best fitting straight line through a
set of points. In fact, if the functional relationship between the two quantities being graphed is
known to within additive or multiplicative constants, it is common practice to transform the data in
such a way that the resulting line is a straight line, say by plotting T vs. 4/ ¢ instead of T vs. ¢ in the
case of analyzing the period T of a pendulum as a function of its length {. For this reason, standard
forms for exponential, logarithmic, and power laws are often explicitly computed. The formulas for
linear least squares fitting were independently derived by Gauss and Legendre.



For nonlinear least squares fitting to a number of unknown parameters, linear least squares fitting
may be applied iteratively to a linearized form of the function until convergence is achieved.
However, it is often also possible to linearize a nonlinear function at the outset and still use linear
methods for determining fit parameters without resorting to iterative procedures. This approach
does commonly violate the implicit assumption that the distribution of errors is normal, but often
still gives acceptable results using normal equations, a pseudoinverse, etc. Depending on the type of
fit and initial parameters chosen, the nonlinear fit may have good or poor convergence properties. If
uncertainties (in the most general case, error ellipses) are given for the points, points can be
weighted differently in order to give the high-quality points more weight.

Vertical least squares fitting proceeds by finding the sum of the squares of the vertical deviations g2
of a set of » data points
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from a function f. Note that this procedure does not minimize the actual deviations from the line
(which would be measured perpendicular to the given function). In addition, although the
unsquared sum of distances might seem a more appropriate quantity to minimize, use of the
absolute value results in discontinuous derivatives which cannot be treated analytically. The square
deviations from each point are therefore summed, and the resulting residual is then minimized to
find the best fit line. This procedure results in outlying points being given disproportionately large
weighting.

The condition for &% to be a minimum is that
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fori =1, ..., n. For a linear fit,
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These lead to the equations
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In matrix form,
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The 2 x2 matrix inverse is
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(Kenney and Keeping 1962). These can be rewritten in a simpler form by defining the sums of

squares
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which are also written as
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Here, cov (%, y) is the covariance and oﬁ and 0‘?, are variances. Note that the quantities Xy x; ¥s

and F%_, x? can also be interpreted as the dot products
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In terms of the sums of squares, the regression coefficient & is given by
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and g is given in terms of & using (<) as
a=V-&%. (28)

The overall quality of the fit is then parameterized in terms of a quantity known as the correlation
coefficient, defined by

po S (29)
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which gives the proportion of $Syy which is accounted for by the regression.
Let j}i be the vertical coordinate of the best-fit line with x-coordinate x;, so
Pi=a+éx, (30)
then the error between the actual vertical point y; and the fitted point is given by
& =P — Py (31)

Now define g2 as an estimator for the variance in e;,
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Then s can be given by

o $Syy =& 88,y (33)
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(Acton 1966, pp. 32-35; Gonick and Smith 1993, pp. 202-204).
The standard errors for ¢ and & are
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SEE ALSO: ANOVA, Correlation Coefficient, Interpolation, Least Squares Fitting--Exponential, Least
Squares Fitting--Logarithmic, Least Squares Fitting--Perpendicular Offsets, Least Squares
Fitting--Polynomial, Least Squares Fitting--Power Law, MANOVA, Matrix 1-Inverse, Moore-Penrose
Matrix Inverse, Nonlinear Least Squares Fitting, Pseudoinverse, Regression Coefficient, Residual,
Spline. [Pages Linking Here]
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