Stephan's Law for Black Body Radiation

Object:

Measure how the current through an electric light bulb varies as the applied voltage is changed. This will allow you to establish Stephan's Law for Black Body Radiation.

Data Sheet

V	1	R=V/I	P(W/m²) radiiometer	Т
0.5				
1.0				
1.5				
2.0				
2.5				
3.0				
3.5				
4.0				
4.5				
5.0				
5.5				
6.0				
6.5				
7.0				
7.5				
	< 1.7 A			

- 1) Verify Stephan's Law by fitting In(E) vs In(R) to a straight line. Attach your data plot and fit
- 2) Find the temperature of the tungsten filament at V=5V.
- **3)** Place your hand in front of the radiometer and measure your power output on the lowest scale. Compare this with a direct calculation if your body temperature is 98.6°F. Comment on any differences.