

1- In 1897 J. J. Thompson devised an experiment to measure the e/m ratio. He accelerated electrons in an electric field E to a voltage V and then released them in to a chamber with magnetic field B to circulate at radius r. Show that

2- Derive the Mass Spectrometer Equation. $m = q \frac{B^2 x^2}{8V}$ where B is the magnetic field intensity, x is the distance to each peak, and V is the ion accelerating voltage.

1)
$$p = qBR$$
 from $F = qvB = \frac{mv^2}{R}$
2) $T = p^2 / 2m = qV$ conservation of energy
2) $\rightarrow p^2 = 2mqV$ or $(qBR)^2 = 2mqV$
 $q^2B^2R^2 = 2mqV$ where $R = x / 2$
 $m = \frac{qB^2(x/2)^2}{2qV} = \frac{qB^2x^2}{8qV}$