Light Emitting Diodes

Object: We study the characteristics of light emitting diodes and use them to demonstrate the quantum nature of light E=hf. Planck's constant $h = 4.13 \times 10^{-15}$ eV/s is determined by measuring the diffusion voltage vs. light emission.

P-n Junction: P-material contains excess +holes and n-material contain excess -electrons. Upon joining p-side holes diffuse across the junction to the right and n-side electrons diffuse across the junction to the left until electrostatic equilibrium is reached. A contact potential difference Uo (diffusion voltage) is developed across the junction corresponding to an internal electric field Eo = -dU/dx.

By forward biasing the diode with an applied electric field $Ea \ge Eo$ current begins flowing through the diode junction, electrons to the left and holes to the right.

As the current flows electrons are continually meeting holes in the p-n interface. When an electron drops in to a hole level a photon is released with energy E=hf. The frequency or wavelength of light (color) will depend on the semiconductor material and diffusion voltage *Uo*. The diode will turn on exactly when Va = Uo. The energy lost in the electron-hole collision is converted to a photon of energy

$$hf = eUo = eVa.$$

The LED junction must be thin and/or transparent so the light emission can escape.

Apparatus: A variable voltage supply is placed in series with the diode and 100Ω *current limiting* resistor. A voltmeter *Va* measures applied diode voltage and a 2nd voltmeter measures the voltage drop *Vd* across the 100 Ω resistor.

Part 1: LED I-V curve Attach the positive voltage terminal to the red LED. In small steps increase the the supply voltage 0 < Va < 2V and measure the current flowing in the circuit I = Vd/100. Graph the *I-V* characteristic curve for the red LED. Determine the diffusion voltage *Uo* or when the red LED just turns on (I > 0) from the graph. Determine an associated error.

Va	0.	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
I=Vd/100	0.										

Part 2: Measurement of Planck's constant *h***.** Attach the voltage supply to each LED in question and measure the diffusion voltage *Uo*. Increase the voltage *Va* until the LED just turns on or forward current $Vd/100\sim0$. Record the value of Va = Uo for each diode.

LED	465nm	560nm	585nm	635nm	660nm	950nm
Uo						

We must have that eUo = hf to satisfy the resonance condition. Plot the data Uo vs f. Fit the data to a straight line y=a + bx or Uo = (h/e) x. The slope=b=h/e should give Planck's constant h =eb! The fit and error can be determined by using the **LED_Calculator** given on the PHYS415 web page.

LED Data

Wavele	ngth Voltage	Frequency		
(nm)	(V)	(Hz)		
465.00	2.43	6.4516e+14		
560.00	1.74	5.3571e+14		
585.00	1.65	5.1282e+14		
635.00	1.54	4.7244e+14		
660.00	1.59	4.5455e+14		
950.00	0.93	3.1579e+14		