Measurement of the Electric Charge with a NPN Transistor

You will measure the electric charge "e" by using the current turn-on characteristics of an NPN transistor. The collector current can be parameterized as

 $V_{RC} = I_0 R_C (e^{\frac{qV_b}{kT}} - 1) \sim I_0 R_C e^{\frac{qV_b}{kT}}$ when T = 300 K where I_C is the collector current and V_b is the base voltage. The transistor turn-on is indicated by an increasing collector current ($V_C = I_C R_C$) as the base voltage V_b is increased. Record V_b and V_C at several points during the turn on.

- 1) Read the lab materials carefully to understand the concepts.
- 2) The NPN transistor circuit should be powered to +24V.
- 3) Use the fine grain potentiometer to vary V_b . Record V_b and V_{RC} at 8 points between $V_b = 360 mV$ to 600 mV.
- 4) Graph $B_b \ versus V_{RC} = \ln(I_0 R_C) + \frac{q}{kT} V_b$ and fit to a straight line with slope $= \frac{q}{kT}$.

$V_b z(mV)$	$V_{RC}(V)$
360	
400	
430	
460	
500	
530	
560	
600	
000	

5) Determine q and the Δq .	<i>q</i> =	+/=
---------------------------------------	------------	-----

6) What is te percent difference between your measurement and the accepted value?