22- Masses of lons

p = qBR $T = p^{2} / 2m = qE$ $p^{2} = 2mqE = q^{2}B^{2}R^{2} = q^{2}B^{2}(x / 2)^{2}$ $2mE = q^{2}B^{2}x^{2} / 4$ $m = q^{2}B^{2}x^{2} / 8E$

- **36-** (a) qE = qvB or v = E/B from force balance V = E w definition of potential v = V/wB v = 2.3e-3 m/s
 - (b) n = i B / e t V = 7.4e28 m-3 Ag (silver)
 - (c) Negative charge carriers move to the right under the magnetic force. The electric field and potential difference is right to left.

I down V			
x	x	х	-
х	х	Х	-
x	х	х	-
x	х	х	-
x	х	х	-
x	х	х	-
ve up			

37- qE = qvB force balance E = vB where j = e n v current density E = j B / e nn = j B / e E **39-** qE = qvB = qV/w force balance v = V/wB = (3.9e-6volts)/(0.0088m)(1.2e-3T) = 0.37 m/s