Lab - HALL EFFECT in p-Ge

In this experiment we measure the Hall effect in a p-Ge sample. The sample is placed in a ~250mT magnetic field perpendicular to its surface. A drift current I_H is supplied to the sample *a* to *b*. The resultant Hall voltage V_H is measured from points *c* to *d* as a function of current I_H . The sign of V_H indicates the dominant charge carrier ($V_H > 0$ ptype , $V_H < 0$ n-type) which contributes to the Hall voltage,

$$V_{H} = \boldsymbol{I} \left(\boldsymbol{B} / \operatorname{n} \operatorname{q} \operatorname{t} \right) \tag{1}$$

Equipment

- Drift Current Supply (0-5 mA)
 Magnet Power Supply (0-15V)
 p-Germanium sample (t = 1mm)
- DMM V_H

Procedure

1) Measure V_H with magnet and drift current off ($I_H=0$).

B = 0 T

 $V_H =$ _____ $I_H =$ _____

- 2) Power the magnet to +13 V, resulting in a gap magnetic field of about B = 250mT
- = 2500G. Measure this in situ. B = _____ T (250mT)
- **3)** Measure V_H vs I_H (0-5mA)

I (mA)	0.0	1.0	2.0	3.0	4.0	5.0
I _H (mA)						
V _H (mV)						

4) From Eqn, 1) $V_H = I x (B / n q t)$ plot $V_H vs I$ and fit the slope to determine the Hall Coefficient $n = \#/m^3$ at room temperature and the Hall coefficient $R_H = 1/nq$.

<u>n</u> = _____ +/- ____

5) A 2nd method would be to solve for n = I x (**B** / V_H q t) at each measurement with current *I* and to average the measurements to find \overline{n} and $R_H = 1/\overline{n} q$.

n = _____ +/- _____

6) Do methods 4) and 5) agree? Discuss.

SAMPLE DATA

	Data Set			
	IH (Amps)	VH (Volts)		
1	0.00004	0.00000		
2	0.00004	0.00000		
2	0.00009	0.00003		
3	0.00014	0.00007		
4	0.00020	0.00011		
5	0.00027	0.00018		
6	0.00030	0.00020		
7	0.00040	0.00028		
8	0.00044	0.00032		
9	0.00050	0.00035		
10	0.00098	0.00069		
11	0.00200	0.00133		
12	0.00300	0.00198		
13	0.00400	0.00258		
14	0.00500	0.00320		
1.5				

