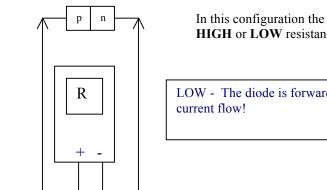

PHYS-321 ELECTRONICS QUIZ-2

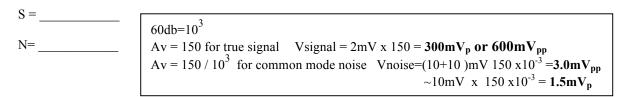
Read each problem carefully. Show your work for full credit. Place a box around your final answer(s).

#1- Intrinsic semiconductors like Silicon-14 or Germanium-32 are doped with p or n type dopants. Identify the dopants and semiconductors below with a check.

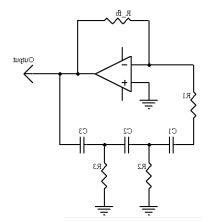

Element	Electron Structure	n-type	p-type	Intrinsic
B ₅	(He)2s2 2p1		Х	
Al ₁₃	(Ne)3s2 3p1		Х	
Si ₁₄	(Ne)3s2 3p2			Х
P ₁₅	(Ne)3s2 3p3	Х		
Ga ₃₁	(Ar)3d10 4s2 4p1		Х	
Ge ₃₂	(Ar)3d10 4s2 4p2			Х
As ₃₃	(Ar)3d10 4s2 4p3	Х		
In ₄₉	(Kr)4d10 5s2 5p1		Х	

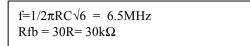
#2- A 2Vpp sine wave (dotted line) is applied to the diode circuits. Sketch Vout for the circuits through one sine-wave cycle. Label the voltage levels carefully.

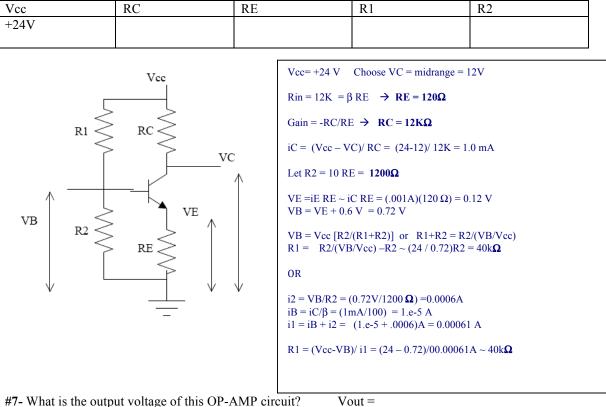
Case-1: The diode is reversed biased on the 1^{st} half-cycle.and has infinite resistance. All voltage is dropped across it, implying no current flow, Vac=Vb. On the negative voltage down cycle the same occurs until the voltage Vbc~ -0.6V and the resistance across the diode drops to zero. Vbc remains at -0.6V


Case-2: The zener diode is reversed biased on the positive half-cycle holding Vbc to a maximum of 1V. On the negative cycle the zener acts as a normal diode (similar to case-1) following the supply voltage until Vbc=-0.6V.

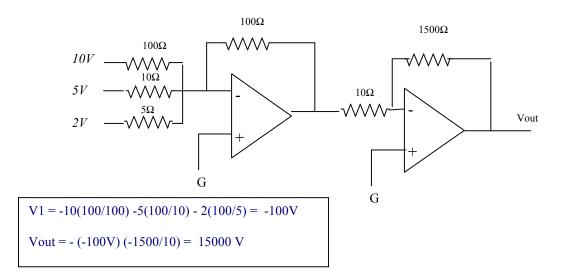
In this configuration the resistance meter reads a **HIGH** or **LOW** resistance for the diode? Explain.

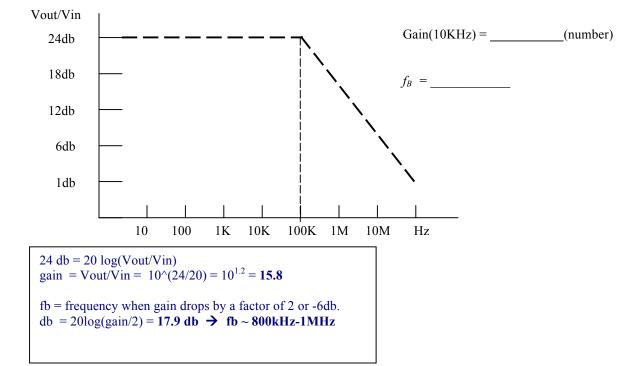

LOW - The diode is forward biased so a small resistance to current flow!


#4- An amplifier has a common mode rejection ratio of cmrr=60db and a gain of Av=150. If a differential signal of 2mV is applied to the input along with an unwanted common mode noise of 10mV, what is the amplitude of the signal and noise at the output?


#5- What is the frequency of the phase shift oscillator shown below. Given $R1=R2=R3=1k\Omega$ and C1=C2=C3=10pf. Also give Rfb.

Rfb = _____




#3-

#6- Design a common emitter transistor amplifier with gain of -100 and input impedance of $12K\Omega$ using an npn transistor β = 100. Place your resistor parameters in the boxes.

#7- What is the output voltage of this OP-AMP circuit?

#8- The gain versus frequency of an amplifier is shown below. What is the gain of this amplifier at f = 10KHz? What is the break frequency f_B of the amplifier ?