## **EMITTER FOLLOWER or VOLTAGE FOLLOWER**

The transistor can be configured in a unity gain situation. This is called the emitter follower or voltage follower. Vout is taken from the emitter junction and follows the input voltage Vin. In essence it is a current amplifier with unit gain.

The input impedance Rin is high and Rout is proportional to the driving source's output impedance Rsource

$$V_{\rm E} = V_{\rm B} - 0.6V \quad \text{or} \quad \delta V_{\rm E} = \delta V_{\rm B} \qquad Vout \sim Vin \tag{1}$$

$$\mathbf{I}_{\mathbf{E}} = \delta \mathbf{V}_{\mathbf{E}} / \mathbf{R}_{\mathbf{E}} = \mathbf{\delta} \mathbf{V}_{\mathbf{B}} / \mathbf{R}_{\mathbf{E}}$$
(2)

$$\mathbf{I}_{\mathbf{E}} = \mathbf{I}_{\mathbf{C}} + \mathbf{I}_{\mathbf{B}} = \beta \mathbf{I}_{\mathbf{B}} + \mathbf{I}_{\mathbf{B}} = (\mathbf{1} + \boldsymbol{\beta}) \mathbf{I}_{\mathbf{B}} = \boldsymbol{\delta} \mathbf{V}_{\mathbf{B}} / \mathbf{R}_{\mathbf{E}}$$
(3)

Looking in to the base  $\mathbf{Rin} = \mathbf{R}_{\mathrm{B}} = \delta \mathbf{V}_{\mathrm{B}}/\mathbf{I}_{\mathrm{B}} = \mathbf{I}_{\mathrm{E}}\mathbf{R}_{\mathrm{E}}/\mathbf{I}_{\mathrm{B}} = \mathbf{R}_{\mathrm{E}}(1+\beta) \sim \boldsymbol{\beta} \mathbf{R}_{\mathrm{E}}$  (4)

Looking out from the emitter **Rout** = R1 +  $(\beta/\text{Rsource} + 1/R_E)^{-1} \sim \text{Rsource}/\beta$  (5)



Construct the Voltage follower circuit. Drive it with the smallest sine wave from your generator at f=1kHz. Measure Vin (Vpp) on your oscilloscope channel-1. Measure Vout (Vpp) on channel-2 of your oscilloscope. Record these values.

Vin = \_\_\_\_\_

Vout = \_\_\_\_\_

Check the frequency response of the voltage follower by sweeping the frequencies between 10Hz and 1MHz.

| f(Hz)    | 10 | 100 | 1K | 10K | 100K | 1M |
|----------|----|-----|----|-----|------|----|
| Vout (V) |    |     |    |     |      |    |
| Vin (V)  |    |     |    |     |      |    |
| gain     |    |     |    |     |      |    |
| Δφ       |    |     |    |     |      |    |

**Question#1-** Does the output signal replicate the input signal? Explain why or why not in terms of transistor function.

**Question#2-** Is there a phase change between input and output signal?

Question#3- What is the input and output impedance of your emitter-follower?

Rin = \_\_\_\_\_

Rout=\_\_\_\_\_

## **TRANSISTOR SWITCH**

## **PHYS321**

One of the main uses of a discrete transistor is that of a switch. Often one needs to control a large current source from a small current source. We create a high impedance source by placing a a  $10k\Omega$  resistor in series with our  $50\Omega$  signal generator.

Thus a high impedance source (low current) drives a low impedance output LED. On the positive half-cycle the transistor conducts  $I_C > 0$  and the LED is turned on. On the negative half-cycle the transistor cuts off and the LED goes off.

The LED takes about 1.6 volts to turn so about 10.4 V is dropped across the 470 $\Omega$  R<sub>C</sub>. R<sub>C</sub> limits the current through the LED or it may burn out if the current is too high.

 $I_{\rm B} = 5V/10k\Omega = 0.5mA$ (1)  $I_{\rm C} = (12-1.6)/470\Omega = 10.4V/470\Omega = 22mA$ (2)



(1) Construct the transistor switch circuit with your 2N3904.

(2) Apply a +DC voltage to the input Vin = 0-5V nominal value to determine when the LED just turns on. Record this voltage. Then increase the voltage to  $\sim$  5V, the LED should be ON.

V<sub>ON</sub> =\_\_\_\_\_

(3) Measure the voltage drops along the Collector-Emitter-Ground path.

 $\Delta V_{LED} =$ \_\_\_\_\_ V

Vcc = +12 V

 $\Delta V_{R2} =$ \_\_\_\_\_ V

 $\Delta V_{2N3904} = \_ V$ 

(4) Do the individual drops and total correspond to what you expect? Calculate  $I_C$  from your measurement as in Eq (2).

I<sub>C</sub> = \_\_\_\_\_ A

(5) Apply a 10Vpp sine wave to Vin. Explain the LED behavior.