Vacuum Tube

- Evacuated tubes used in PhotoElectric Effect and early X-ray work circa 1890.
- Vacuum tube invented circa 1903 for radio by Marconi group. Diode action!
- Triode allowed modulation of anode current by small change in grid voltage.

Solid State Transistors

-Lilienfeld, Heil (Germany) -Shockley and Pearson (Bell Labs Patent) circa 1930. - Current modulation and gain $I_{CF} = \beta i_{BF} (\beta \approx 100)$

BiPolar Transistor Operation

Holes injected into base lower barrier potential. V_{CE} >2V to allow electrons to flow across barrier . (They can be captured by injected holes!)

Cross Section of an NPN Bipolar Device

Transistor Curves

•I_C the current through the collector is almost constant when the transistor is operated in its linear range. I_C = β I_B

http://www.st-andrews.ac.uk/~jcgl/Scots_Guide/info/comp/active/BiPolar/bpcur.html

Transistor Curves

- The base current $I_{\rm B}$ will begin to flow freely when $V_{\rm BE}{>}0.7V$.
- We say the transistor has turned on at this point.

http://www.st-andrews.ac.uk/~jcgl/Scots_Guide/info/comp/active/BiPolar/bpcur.html

Amplification and Zin

Amplification

1)
$$I_E = I_b + I_C \longrightarrow \delta I_E = \delta I_C$$

2) $\beta = I_C / I_b \sim I_E / I_b \quad (I_b \sim 0 = few \ \mu A)$
2) $V_E = V_b + 0.7V \longrightarrow \delta V_b = \delta V_E = \delta I_E R_E$
2) $V_{CC} = V_C + V_E + 0.7V \longrightarrow \delta V_E = -\delta V_C = \delta I_C R_C$

$$A_{V} = \frac{\delta V_{C}}{\delta V_{b}} = \frac{-\delta I_{C} R_{C}}{\delta I_{E} R_{E}} = -\frac{\delta I_{C} R_{C}}{\delta I_{C} R_{E}} = -\frac{R_{C}}{R_{E}}$$
$$A_{V} = -R_{C} / R_{E}$$

Input Impedance (Im *pedance looking in to base*) $Z_{IN} = V_b / I_b \approx V_E / I_b = I_E R_E / I_b = (I_E / I_b) R_E = \beta R_E$ $Z_{IN} = \beta R_E$

Temperature Dependence

The base-emitter voltage of the silicon pn junction in a transistor is written as a function of temperature *T*, reference temp T_0 , bandgap gap voltage Vg, collector current I_c and current I_{c0} at T_0 .

$$I_{C} = I_{C0} e^{\frac{qVg}{kT}(1-T/T_{0}) + \frac{qV_{BE0}}{kT}(T/T_{0})} \times e^{\frac{qV_{BE}}{kT}}$$

This temperature dependence will make any transistor amplifier gain drift up or down. Differential pairs of transistors are commonly used to cancel **common mode** drifts.

$$I_C \sim I_{C0} \ e^{\frac{qV_{BE}}{kT}}$$

Differential Pair

- In order to cancel transistor temperature drifts and some *common mode noise* we commonly see a differential pair used.
- Temperature dependent leakage currents in the two transistors tend to cancel when Q1 and Q2 are located near each other.
- When the input is grounded Q1 and Q2 cancel each others signal so the output is clamped to zero also.

Fig. 5-3. Amplifier with single-ended input.

Frequency Response

- We can think of the amplifier as a combination of low and high pass filters in the circuit below.
- f_{IO} = mainly due to the input capacitor C_{IN} and input impedance $R_{IN}=Z_{IN}$.
- f_{hi} = The stray capacitances C_S is internal to the every circuit and represents small capacitances due to connection leads and internal fabrication. $R_{OUT}=Z_{OUT}$

Common Emitter Amplifier

2N3904

•Emitter is grounded → " Common Emitter " (Signal Source and load share the ground at E)

- •NPN Transistor with positive +Vcc forward biases the base-emitter junction.
- •The transistor acts as a "Constant Current Source" when forward biased correctly.
- •The resistance across the base-emitter junction is about n = 25 mm / J

$$r_E = 25 \text{mv} / 1_E$$

•Rule of Thumb
$$\rightarrow$$
 I_C ~ I_E ~ 1ma

Usually the input is "AC coupled" by inputing Vin through capacitor C. Only the AC component of a signal is passes!
GAIN = Vout/Vin = -R_C / R_E and Vout is180° inverted.
Input impedance r_{IN} = (1/R₁ + 1/R₂ + 1/ βR_E)⁻¹ if R1 and R2>>R_E r_{IN} ~ β R_E
er_{OUT} ~ (1/R_C + 1/R_E)⁻¹ ~ R_C looking into the output.
V_E ~ Vin - 0.7V indicating small voltage drop across base-emitter junction.

•Vout = Vcc $-I_C R_C = V_C$

•Vout maximum ~ Vcc (power supply voltage)

Transistor Switch

- •A transistor can be used as a robust switch to turn currents on and off.
- •A small base current can control a large voltage supply current.
- •When the switch is closed the transistor is driven in to saturation and acts as a short circuit.
- •Transistors are useful switches when driving loads from high impedance sources (small current) such as microcomputers etc.
- •Proper choice of R_B important to transistor life.

 $R_{R} \approx \beta R_{C}$

Common Collector- Emitter Follower

- A emitter follower is a power booster circuit with unity gain.
- It is sometimes called a repeater or buffer amplifier.
- A small base current can be boosted to a large base current while preserving the signal shape, but significantly increasing the output power.
 The output is taken from the emitter.

•The emitter follower can be used to match a high impedance input to Low impedance output.

Output

1)
$$V_E = V_B - 0.6V$$
 $V_E \simeq V_B$ $\mathbf{V}_{OUT} = \mathbf{V}_{IN}$
Input Impedance
(Im pedance - to - ground seen looking in to back 1) $V_E / R_E \sim V_B / R_E = I_E = I_B + I_C = (1 + \beta)I_B$
 $V_E / R = (1 + \beta)I_B$

2)
$$Z_{IN} = V_B / I_B = (1 + \beta)R_E \sim \beta R_E$$
 $Z_{IN} = \beta R_E$
Output Impedance

(*Effective series impedance at transistor output*)

$$Z_{OUT} = Z_{SOURCE} / \beta$$

se)

Cascading Amplifiers

•To achieve higher gain or input impedance we can cascade amplifiers output-to-input.

Feedback

•An amplifier may become more stable if a fraction of the output signal is fed back in to the input. (β =feedback fraction +/-)

- Positive feedback will enhance oscillatory behavior.
- Negative feedback will tend to cancel unwanted oscillatory behavior.

Transistor Amp Design

- Set R_E by the input impedance. Zin = βR_E
- Set the R_C by the desired voltage gain. $|Av| = R_C / R_E$
- Set R₂ by the criteria that R₂ = 10% Zin = βR_E /10 (R2 diverts most current away from the transistor)
- Set R1 by the amplifier gain Av and dynamic range of the power supply Vcc.

```
Vb = 0.7V + (1/Av) Vcc / 2
Vb = R2/(R1+R2) Vcc
Solve for R1
```