Digital Circuitry

Flip-Flops
LEDs - Seven Segment Decoder Binary Counters
Multiplexing
Shift Registers
Adder
One Shot

Flip-Flop

- In a number of digital applications one needs a device whose outputs Q1, Q2 states go hi and low as the input states changes.
- Since $S / R=1 / 0$ and $S / R=0 / 0$ leave $Q=1$ we have a bounceless switch!

Set	Reset	Q	\bar{Q}
0	0	NC	NC
1	0	1	0
0	1	0	1
1	1	$?$	$?$

RST Flip-Flop (Latch)

-In a clocked RST-FF the state is only allowed to change if the clock is high.
-The clock signal thus latches (locks) the output state.

Data and Toggle Flip-Flops

-A D flip-flop (DFF) avoids the indeterminant states (NR).
-When the CLK=hi Q is set to $D(0$ or 1$)$
-When CLK = low Q unchanged

-A Toggle flip-flop (TFF) flips state upon a T=1 pulse.
-When $T=1 \quad Q=0$-> $Q=1$ or $Q=1->Q=0$
-When $\mathrm{T}=0$ No Change

JK Flip-Flops

- The J-K flip-flop can be wired to behave as most other types of flip-flop.
- It incorporates the functionality of the previous FFs.

-CLK=LO NC
-CLK=HIGH
If J is high and K is low, Q will set. $(Q=1)$
If K is high and J is low, Q will reset ($Q=0$)
If J and K are both low, Q will not change. (NC)
If J and K are both high, the output toggles on the clock pulse.

BCD to 7-Segment Decoder

-BCD \#'s are decoded to turn on digit forming LEDs

$B C D$ inputs				segment outputs							display
D	C	B	A	a	b	c	d	e	f	g	
0	0	0	0	1	1	1	1	1	1	0	5
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	\square
0	0	1	1	1	1	1	1	0	0	1	7
0	1	0	0	0	1	1	0	0	1	1	1
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	0	0	1	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0	1
1	0	0	0	1	1	1	1	1	1	1	B
1	0	0	1	1	1	1	0	0	1	1	7

-Two 7-segment displays.

Ripple Counter

- A ripple counter uses RST flip-flops to perform binary counting.
- The Q of each FF toggles the next in the chain.
- Initially a reset $R=1$ is issued setting all flip-flops to $Q=0$.
-The true RST FF changes on a down transition.

Multiplexer

- A multiplexer allows any of a number of inputs states to be translated to to an output state.
- A decimel input could be multiplexed to a binary output.
- A number of analogue inputs can be translated to a digital out.
- 16 digital inputs can be multiplexed to 4 outputs, thus a reduction in the number of cables.

Shift Register

- An register holds n bits of digital information to be used in further operations, usually constructed with a series of flip-flops.
- The bits in a serial-shift register can be shifted to the right or left in n clock cycles.
-The bits in a parallel shift register can be simultaneously shifted in or out in one clock cycle.

One Shot

- It is often needed that a digital pulse be created when an input signal makes a transition from low to high state. - monostable multivibrator (one-shot).
-The pulse duration can be controlled by an RC time constant. $\Delta T \sim R C$ \cdot When signal A transitions above $B=0$, the Q output goes high for ΔT.

