Digital Circuitry

Flip-Flops LEDs - Seven Segment Decoder Binary Counters Multiplexing Shift Registers Adder One Shot

Flip-Flop

In a number of digital applications one needs a device whose outputs Q1,Q2 states go hi and low as the input states changes.
Since S/R=1/0 and S/R=0/0 leave Q=1 we have a bounceless switch!

Set	Reset	Q	\overline{Q}		
0	0	NC	NC		
1	0	1	0		
0	1	0	1		
1	1	?	?		

RST Flip-Flop (Latch)

In a clocked RST-FF the state is only allowed to change if the clock is high.
The clock signal thus *latches* (locks) the output state.

Data and Toggle Flip-Flops

•A D flip-flop (DFF) avoids the indeterminant states (NR).

- •When the CLK=hi Q is set to D (0 or 1)
- •When CLK = low Q unchanged

A Toggle flip-flop (TFF) flips state upon a T=1 pulse.
When T=1 Q=0 -> Q=1 or Q=1 -> Q=0
When T=0 No Change

JK Flip-Flops

- The J-K flip-flop can be wired to behave as most other types of flip-flop.
- It incorporates the functionality of the previous FFs.

•CLK=LO NC
•CLK=HIGH
If J is high and K is low, Q will set. (Q=1)
If K is high and J is low, Q will reset (Q=0)
If J and K are both low, Q will not change. (NC)

If J and K are both high, the output toggles on the clock pulse.

BCD to 7-Segment Decoder

•Two 7-segment displays.

•BCD #'s are decoded to turn on digit forming LEDs

BCD inputs				segment outputs							
D	С	В	Α	а	b	с	d	е	-f	g	display
0	0	0	0	1	1	1	1	1	1	0	Û
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	Ч
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	0	0	1	1	1	1	1	Ь
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	0	0	1	1	9

Ripple Counter

- A ripple counter uses RST flip-flops to perform binary counting.
- The Q of each FF toggles the next in the chain.
- Initially a reset R=1 is issued setting all flip-flops to Q=0.
- •The true RST FF changes on a down transition.

Multiplexer

- A multiplexer allows any of a number of inputs states to be translated to to an output state.
- A decimel input could be multiplexed to a binary output.
- A number of analogue inputs can be translated to a digital out.
- 16 digital inputs can be multiplexed to 4 outputs, thus a reduction in the number of cables.

Shift Register

- An register holds n bits of digital information to be used in further operations, usually constructed with a series of flip-flops.
- The bits in a *serial-shift register* can be shifted to the right or left in n clock cycles.
- •The bits in a *parallel shift register* can be simultaneously shifted in or out in one clock cycle.

One Shot

- It is often needed that a digital pulse be created when an input signal makes a transition from low to high state. *monostable multivibrator* (one-shot).
- •The pulse duration can be controlled by an RC time constant. $\Delta T \sim RC$ •When signal A transitions above *B*=0, *the* Q output goes high for ΔT .

