CHAPTER 14- NUCLEAR PHYSICS APPLICATIONS

NUCLEAR REACTIONS $a + A \rightarrow B + C$

Energy and momentum must be conserved in all reactions, leading to

$$KE_{a} + M_{a}c^{2} + KE_{A} + M_{A}c^{2} = KE_{B} + M_{B}c^{2} + KE_{C} + M_{C}c^{2}$$
$$Q = (M_{a}c^{2} + M_{A}c^{2} - M_{B}c^{2} - M_{C}c^{2}) = KE_{B} + KE_{C} - KE_{a} - KE_{A}^{0}$$

If Q > 0 we have an *exothermic* reaction which liberates energy. If Q < 0 we have an *endothermic* reaction which needs energy to go.

Example 14-1 Find Q of the reaction ${}^{1}H_{1} + {}^{7}Li_{3} \rightarrow {}^{4}He_{2} + {}^{4}He_{2}$ and the kinetic energy of the products.

Q = M(Li) + M(H) - 2 M(He)= 7.016003u+1.007825u-2(4.002603)u x 931.5 MeV = 17.3 MeV

 $KE_{PRODUCTS} = Q + KEa = 17.3 MeV + 0.6 MeV = 17.9 MeV$

THESHOLD for the ENDOTHERMIC Q<0 REACTION $a+A \rightarrow B+C+D+...$

Consider particle "a" moving with velocity V toward particle "A" which is at rest. Particles "B", "C", "D", etc. emerge.

A reaction of the type $a+A \rightarrow B+C+D$ will only proceed if the total energy E_{CM} of a+A is just large enough to create B+C+D at rest in the center of momentum (CM) frame

 $KE_a > |Q| [1 + M_a/M_A]$

Example of Endothermic Reactions Consider the reaction $^{7}Li(p,n)^{7}Be$ with Q = -1.645 MeV endothermic What is the threshold energy of the proton that will make this go?

$$KE_p > -Q (1 + M(H)/M(Li)) = 1.645 (1 + 1.008u/7.016u) MeV = 1.645 (1.144) MeV$$

 $KE_{p} > 1.88 MeV$

REACTION CROSS SECTION

Consider a beam of particles of initial intensity Io (number/s) hitting a thin slab of material of thickness Δz . Some particles will be scattered or absorbed from the beam. Let dI be those scattered or absorbed out of the beam.

 $dI / Io = -(\rho N_A / A) \sigma_{scat} \Delta z$

dl/lo must be proportional to the number of atoms encountered along the beam spot.

Io Absorbed Transmitted -dI I -dI Scattered dx

= the scattering area that a projectile sees on approaching the target. Δz = target thickness

$$\int dI/Io = -n \sigma \int dz$$
$$\ln (I) = -n \sigma \Delta z + C$$
$$I = Io exp[-n \sigma \Delta z]$$

The rate of particles scattered or absorbed out of the beam is simply given by

$$I_{ABS} = Io - I = Io (1 - exp[-n \sigma z] \#/s$$

The absorbed power is approximately $Pabs = \Delta E/s = Eo \Delta N_{ABS}/s \approx Eo I_{ABS}$

$$Pabs = Eo I_{ABS}$$

Example and Quiz Topic:

A beam of energy Eo = 200MeV and intensity Io = 5M/s is incident on a thin slab of ${}^{27}\text{Al}_{13}$ (ρ =2.7 g/cm³) of thickness z = 5mm. The interaction cross section σ = 21b. (1 b =10⁻²⁴ cm²)

a. What is the beam intensity emerging from the slab?

$$n = \rho N_A / A = (2.7) (6.02 \times 10^{23}) / 27 = 6.02 \times 10^{22} atoms/cm^3$$

$$\begin{split} I &= Io \; exp[-n \; \sigma \; z \;] = Io \; exp[-(6.02 \times 10^{22} \; atoms/cm^3) \; (21 \; x \; 10^{-24} \; cm^2 \;) \; (\; .5 cm)] \\ &= Io \; exp[-.632] \; = \! 0.54 \; Io \\ I &= Io \; (0.54) \; = \; 2.7 \; x \; 10^6/s \; \; emerging \; from the slab. \end{split}$$

b. How much energy per second is released in to the slab by the interacting beam?

$$\begin{split} Iabs &= Io~(1-0.54) = 0.46~Io = 2.3~x~10^6/s\\ Pabs &= Iabs~Eo~=~(200 MeV)~(2.3~x~10^6/s~) = 4.60~x~10^{14}~eV/s = 1.2~x~10^{-5}~J/s\\ Pabs &= 12~\mu W \end{split}$$

We have ignored energy from particles which escape the slab (albedo).

NEUTRONS

Neutrons from reactions are classified as -Fast neutrons KE > 1MeV -Slow neutrons KE < 1MeV -Thermal neutrons KE ~ 3/2 kT (kT = 1/40 eV @ room temperature)

Fast neutrons can be *thermalized* by passing through matter where they progressively slow down in collisions with atoms. Collisions with atoms of comparable size yield the maximum energy transfer, thus maximum neutron energy loss ΔE_n !

 $\Delta E_n \sim l(m1-m2)/(m1+m2)l$ Neutron energy loss

Materials which slow down neutrons effectively are called *moderators*. Materials will hydrogen are very effective moderators. H₂O, Hydrocarbons, etc. Once the neuron is thermalized it undergoes a neutron-capture reaction. The intermediate state ${}^{A+I}X_{Z}$ * quickly decays by gamma emission.

 ${}^{I}n_{0} + {}^{A}X_{Z} \rightarrow {}^{A+I}X_{Z}^{*} \rightarrow {}^{A+I}X_{Z} + \gamma$

NUCLEAR FISSION

Between 1900-1930 scientist understood that elements like Uranium and Radium Emitted α , β and γ particles effusely. In each of these decays the α , β and γ energy depend on the reaction $Q \sim few \ MeV$ as we discussed.

In the mid-1930's U.S., Italian, and German scientists began detecting reactions in which the parent nuclei broke in to two large fragments. Since the parts may not easily emerge it took time to understand these $high-Q \sim 100$'s MeV reactions. The high-Q was released in to the material as thermal energy, photons, atomic electron ionizations etc.

K= *reproduction constant* = Average number of neutrons which cause another fission.

K<1 Reactor sub-critical – not producing heat K=1 Reactor critical – producing heat K>1Reactor Super-critical- Runaway, Melting, etc

- Neutron Leakage Neutron Reflectors
- Neutron Moderation -
- Neutron Capture by U²³⁸/U²³⁵ Enriched U²³⁵ Fuel Rods
- Control of Power Level Control Rods.
- Waste disposal- Fuel Rods

FUSION REACTORS

Proton-Proton cycle in the Sun	
$^{1}\text{H}_{1} + ^{1}\text{H}_{1} \rightarrow ^{2}\text{H}_{1} + e^{+} + v_{e}$	Hydrogen
$^{1}\text{H}_{1} + ^{2}\text{H}_{1} \rightarrow ^{3}\text{He}_{2} + \gamma$	Burning
${}^{1}\text{H}_{1} + {}^{3}\text{H}e_{2} \rightarrow {}^{4}\text{H}e_{2} + e^{+} + v$	e
${}^{3}\text{He}_{2} + {}^{3}\text{He}_{2} \rightarrow {}^{4}\text{He}_{2} +$	$^{1}H_{1} + ^{1}H_{1}$

Fusion Reactor Research

${}^{2}\text{H}_{1} + {}^{2}\text{H}_{1} \rightarrow {}^{3}\text{He}_{2} + {}^{1}\text{H}_{1}$	Q = 3.27 MeV	p-D
${}^{2}H_{1} + {}^{2}H_{1} \rightarrow {}^{3}H_{1} + {}^{1}H_{1}$	Q = 4.03 MeV	D-D
${}^{2}\text{H}_{1} + {}^{3}\text{H}_{1} \rightarrow {}^{4}\text{He}_{2} + {}^{1}n_{0}$	Q = 17.59 MeV	D-T

FUSION RATE ~ Critical Temperature x Ion Density x Confinement Time

Critical Ignition Temperature- Tc is the temperature necessary to overcome the electrostatic repulsion between p-p, p-D, D-D, or D-T

D-D	$Tc = 4 \times 10^8 K$	$E = k_B T = 35 \ keV$	$n \tau > 10^{14} s/cm^3$
D-T	$Tc = 4.5 \times 10^7 K$	$E = k_B T = 4 \ keV$	$n \tau > 10^{16} s/cm^3$

Ion Density n = Number Density of Deuterium

Confinement Time - Time τ at which the interacting ions maintain Tc.

TOKOMACs - Magnetic Confinement of Ions. - NOT SUSTAINED YET

D-T fusions reported at 10^{18} /s $n \tau = 5 \times 10^{13} \text{ s/cm}^3$

 $x10^{13} \text{ s/cm}^3 \qquad Tc = 30 \text{ keV}$

LASER IMPLOSION - Lasers used to implode D-T pellets. - NOT SUSTAINED YET

ENERGY LOSS for PHOTONS in MATER

Gamma rays and Xrays are attenuated (absorbed) when passing through a material. The number surviving after traveling a distance x is:

 $\mu = \mu(E) = n \sigma$ is called the *absorption coeficient* is a strong function of energy *E*. Thus gamma radiation, xrays, etc can have vastly different absorption cross sections depending on *E*. Note this is exactly the same expression as derived for particle interactions in matter. The cross section σ_{abs} is called the photon absorption cross section.

Three regions of energy loss can be identified depending on the photon energy E.

(2) PhotoElectric Effect (photons ionize atomic electroms)

(3) Pair Production - Photons have enough energy > 2 (511 KeV) to create an e+e-pair. (E > 1.022 MeV)

In the following plots coefficient μ/ρ is plotted versus photon energy for Pb. The spikes in the graphs represent incident photon which excite X-ray transitions in Pb. Thus below

1 MeV lead is effective at stopping photons. Above 1 MeV the attenuation coefficient has dropped manner orders of magnitude. Thus Pb shields you well from Xrays but not gamma rays.

HALF VALUE THICKNESS for Photons - $x_{1/2}$

 $x_{1/2}$ = the thickness that will reduce the intensity of a photon beam by a factor of 2 I = Io exp{- $\mu x_{1/2}$ } or I/Io = 1/2 = exp{- $\mu x_{1/2}$ }

$$a_{1/2} = \ln(2)/\mu = 0.693 / \mu$$

See Example 14-7 $\mu = 55 \text{ cm}^{-1}$ for lead at a wavelength $\lambda = 20$ pico meter (Table 14-2) $x_{1/2} = -0.693/55 = 0.0126 \text{ cm} = 0.126 \text{ mm}$

ENERGY LOSS for Heavy of Charged Particles in Matter – Stopping Power

Heavy charged particles $(p^{\pm}, \alpha^{++}, \pi^{\pm}, \mu^{\pm})$ lose energy while traversing matter mainly by ionization of atomic electrons. Scientists Bethe and Bloch calculated this energy loss by ionization- called the **Bethe-Bloch formula**.

(1) For low energy protons $E < Mc^2$ the energy loss is due to highly ionizing interactions with the material.

(2) For protons $E \ge Mc^2$ the proton reaction cross section with the atoms drops significantly to produce a $(1/\rho)dE/dx \sim 2 MeV \text{ cm}^2/g$.

Example -

How much energy will a 1000 MeV proton loose in traveling 50cm into water? - $dE/dx = 2 \text{ MeV/g}^{-1}$ -cm² x 1 g/cm³ in H₂O $\rho = 1 \text{ g/cm}^{3}$ - dE/dx = 2 MeV/cm

 $\Delta E = dE/dx 50cm = 100 MeV$ of lost energy

RANGE for Protons/Electrons $R = \int_{0}^{E} (dE/dx)^{-1} dE = \{1/(dE/dx)\} \Delta E$ *Example*- What is the range of a 200 MeV proton in water? $R \sim (dx/dE) \Delta E = \{2 \text{ MeV/cm}\}^{-1}$ 200 MeV = 100 cm

MAXIMUM RANGE OF BETA PARTICLES

BETA PARICLE ENERGY (MeV)

RADIATION DAMAGE IN MATTER

The ΔE energy loss mainly due to ionization of atoms.

- Weakening of bonds in materials- Material Fatigue.
- Color Centers in crystals Discoloration, Light attenuation in Optical Fibers,
- Displacement centers in Si crystals NASA worries about their computers in space.
- Somatic Damage to Cells and organs can cause organ failure.
- Genetic Damage to reproductive cells cause cancers.

RADIATION ABSORBED DOSE - rad

 $1 \text{ rad} = 10^{-2} \text{ J}$ of energy released into 1 kg of absorbing material.

1 roentgen = 3.33×10^{-10} C of electric charge produced in 1 cm³ of air at STP. RBE = Relative biological Effectiveness takes in to account biological damage to cells.

$DOSE(rem) = N(rads) \times RBE$

Xrays and Gammas Betas Alphas Slow Neutrons	RBE = 1 RBE = 1-1.7 RBE =10-20 RBE = 4-5	Damage Factor
Protons, Fast Neutrons	RBE = 10	
Heavy Ions	$\mathbf{KBE} = 20$	
Natural Background Radiat Radon Internal (40 K) Terrestial (geology) Cosmic (C 14 , T)	tion 130 mr 40 28 (15-1 27	<u>em per yr</u> 150)

60 mrem per yr	
39	
14	
10	

Government Regulation on Radiological Workers - < 500 mrem per yr

An assortment of typical radiation doses (in mrem)	
Used to destroy the bone marrow in preparation for a marrow transplant (given over several days)	1,000,000
Approximate lethal dose (" LD_{50} ") if no treatment and given to the entire body in a short period	450,000
Causes radiation sickness (when absorbed in a short period)	>100,000
Increase in lifetime dose to most heavily exposed people living near Chernobyl	43,000
Average annual dose (excluding natural background) for medical x-ray technicians	320
Maximum permissible annual dose (excluding natural background and medical exposure) to general public	170
Natural background, Boston, MA, USA (per year)(excluding radon)	102
Natural background, Denver, CO, USA, (per year)(excluding radon)	180
Additional annual dose if you live in a brick rather than a wood house	7
Average dose to person living within 10 miles of Three-Mile Island (TMI) caused by the accident of 28 March 1979	8
Most heavily exposed person (a fisherman) near TMI	<100
Approximate dose received by a person spending 1 year at the fence surrounding a nuclear power station	0.1-0.6
Average dose to each person in the U.S. population from nuclear power plants (per year)	0.002
Received by the bone marrow during a set of dental x rays*	9.4
Annual dose to the gonads from TV sets	0.2-1.5
Received by the bone marrow during a barium enema	875
Received by the bone marrow during a chest x ray	10
Received by breast during mammogram	50-700
Average airline passenger (10 flights/year)	3
Flight crew and cabin attendants (per year)	160
Hourly dose to skin holding piece of the original "Fiesta Ware" (a brand of pottery)	200-300
Annual dose to each person in the U.S. population from fallout (former weapons testing plus Chernobyl)	0.06

* Dose much higher (several thousand mrem) to the skin in the path of the beam, but bone marrow is more susceptible to damage (e.g., leukemia).

near the wire! A large induced

signal is detected on the wire.)

RADIATION DETECTION

Ionization Chamber (Ionized Charge collected at electrodes)

$$q = \int i dt$$

multiply down the electrode chain. The final signal is 2^N times the initial electron charge seen at the faceplate.)

PEACEFUL USES of RADIATION

- Tracers in Medicine
- Neutron Activation for Element Analysis ${}^{1}n_{0} + {}^{65}Cu_{29} -> {}^{66}Cu_{29}^{*} -> {}^{66}Zn_{30} + {}^{0}e_{-1} + {}^{0}v_{0}$
- Radiation Therapy
- Food Preservation