PHYS 315 EXAM II

10/20/05

A =

Place your answers in the spaces provided. You must show your work for full credit. 10 pts each.

#1- A quantum state is given by $\Psi = A \begin{bmatrix} 2 & | \phi_1 > + 3 & | \phi_2 > + i & | \phi_3 > \end{bmatrix}$

with E1 = 1 eV, E2 = 2 eV anad E3 = 4 eV in energy.

(a) Find the normalization *A*.

$$A^{2} [2^{2}+3^{2}+(i)(-i)] = 14$$

 $A = 1/\sqrt{14}$

- (b) Find the probabilities for being in the n=1,2,3 states. P1= _____ P1 = $(2/\sqrt{14})^2 = 0.29$ P2 = $(3/\sqrt{14})^2 = 0.65$ P3 = $(1/\sqrt{14})^2 = 0.07$ P2 = _____ P3 = _____
- (c) Find the expectation value of the energy for this system.

$$\langle E \rangle = _ eV$$

$$\langle E \rangle = 0.29 E1 + 0.65 E2 + 0.07 E3$$

= (0.29 + 1.3 + 0.28) eV = 1.87 eV

#2- Calculate the DeBroglie λ wavelength of an electron with kinetic energy 50 KeV.

$$\lambda = ____m$$

$$E = T + mc^{2} = 50 \text{ KeV} + 511 \text{ KeV} = 561 \text{ KeV}$$

Pc = [E² - m²c⁴] ^{1/2} = 231.5 KeV
$$\lambda = h/P = hc/231.5 \text{ KeV} = (1240/231500) \text{ nm} = 0.0054 \text{ nm}$$

#3- Two copper conductors are separated by an insulating layer of copper oxide representing a barrier height of 10eV and barrier width of a = 5 nm.

(Given the wave number $\kappa = 8.9$ nm⁻¹.)

(a) What is the probability T that a 7eV electron can tunnel through this barrier.

 $\kappa a = (8.9 \text{ 1/nm}) (5\text{nm}) = 44.5$ $T = \exp -2 \kappa a = 2.2\text{e-}39$ *T* = _____

R = _____

(b) If 10^{19} electrons hit the barrier per second $(f = 10^{19} \text{ s}^{-1})$ what is the tunneling rate R?

 $R = fT = \frac{2.2 \ e-20}{1/s}$

#4- Find the the x-ray energy of the $\,K_{\alpha}\,$ transition in $^{207}Pb_{82}\,$.

hf = _____

E2 = -13.6 $(82-1)^2/2^2$ = -22.3 KeV E1 = -13.6 $(82-1)^2/1$ = -89.2 KeV $hf = \Delta E_{21}$ = [-22.3 -(89.2)] KeV = 66.9 KeV **#5-** The sodium atom ${}^{22}Na_{11}$ has one valence electron in the 3s level at E3 = -5.14 eV. Transitions between the 3s and 3p states form the *Sodium Doublet*.

(a) Record the angular momentum and spin states of this electron.

$\ell =$	0					
m _e =	0					
<i>S</i> =	1/2		l	l	l	
m _s =	+1/2	<mark>-1/2</mark>				

(b) In a spectrum tube the Na atoms are excited to the 3p level. Find the J and M_J values of the two 3p states. Also identify the Spectroscopic notation for these states

J =	<mark>3/2, 1/2</mark>	
$M_J =$	<mark>+-3/2 +-1/2</mark>	<mark>+-1/2</mark>
n L _J	2P3/2	3P1/2

(c) The lower of the 3p states is at E = -2.105 eV The higher 3p state is separated by by about 0.6 nm. Find the energy of the higher 3p state.

 $\lambda 1 = hc/E1 = 589.07 \text{ nm}$ $\lambda 2 = \lambda 1 + 0.6 = 589.67 \text{ nm}$ $E2 = hc/\lambda 2 = 2.103$

(d) Draw an energy level diagram, labeling the states with notation $(n L_J)$. Draw in the doublet transitions. What are the doublet transition energies?

ΔE_1	<mark>3.035</mark>	eV
ΔE_2	3.037	eV

