CHAPTER 4- PARTICLE/WAVE NATURE OF MATTER

RUTHERFORD ATOM

E. Rutherford discovered that the atom had a hard core we call the nucleus.

He scattered alpha particles (${}^{4}\text{He}_{2}$) on a gold foil and noticed some α 's were deflecting backwards. How could bb's reflect backwards from a tissue paper.

He could only conclude that he gold atoms must have a hard core. He estimated the radius R of the nucleus by using conservation of energy.

$$KE\alpha + PE\alpha = KE\alpha + PE\alpha$$
Source
$$Turning point$$

$$R$$

 $KE\alpha = k(2e)(Ze)/R$ R = k(2e)(Ze)/KER < 4.9e-15 m See example 4.5

Debroglie Hypothesis

Louis DeBroglie speculated that if light could behave as a particle, then matter might behave as a wave?

<mark>λ = h / p</mark>

Consider a particle of mass M trapped in an enclosure. Might only certain wavelenths be trapped just as in a musical instrument?

Particle trapped in a **Box** is a good analogy to a Nucleus or Atom trapped in its orbit about the nucleus.

POTENTIAL ENERGY BARRIERS U(x)

The Box represents a Potenial Energy Barrier U(x). where F(x) = -dU(x)/dx

NEUTRONS, PROTONS TRAPPED IN A NUCLEAR WELL

The nucleus is made of neutrons and protons bound together by the nuclear force. The force F(x) felt by any one *nucleon* is roughly constant until the nucleon reaches the nuclear radius *R*.

The wave representing the n or p can only take on momentum given by the DeBroglie wave: $P = h / \lambda$.

En = $n^{2}h^{2}8mR^{2}$ n=1,2,3,4,... R=5.0e-15m=Nuclear Radius En = n^{2} (4.136e-15 eV-s)²/8(939e6 eV/c²) (5.0e-15m)²

 $En = n^2 8.2 \text{ MeV}$ Energy Levels

What is the momentum of a nucleon in the ground state?

 $E = 1/2 m v^2 = P^2/2m$

 $P_1 = \text{sqrt}(2mE_1) = \text{sqrt}\{2 \text{ (939 MeV/c}^2) \text{ (9.2MeV)}\}$ $P_1 = \underline{131 \text{ MeV/c}}$

THE BOHR ATOM - Quantum Solution of the Hydrogen Atom

ATOMIC TRANSITIONS

Electrons in the atom are only allowed to reside in the energy *eigenstates*. En = $-13.6 \text{ eV} \quad Z^2/n^2$

excitation de-excitation The atom can be excited by Collision with another atom. (A flame, heat) $A + B \rightarrow A^* + B$ $A^* \rightarrow A + \gamma$ (1) Absorption of a photon (like the photoelectric effect). $A + \gamma \rightarrow A^*$ $A^* \rightarrow A + \gamma$ (2) $A + e \rightarrow A^* + e^{\prime}$ $A^* \rightarrow A + \gamma$ (3) Absorption of energy from a electron (arc lamp, etc.) hf A`* А А В B (1)(2) (3)

De-EXCITATON

In each process of de-excitation $A^* \rightarrow A + \gamma$ from conservation of energy.

$$E(A^*) = E(A) + E\gamma$$

$$E\gamma = E(A^*) - E(A)$$

$$E\gamma = Ef - Ei$$

The de-excitsation created a photon of energy hf = Ef - Ei

IONIZATION

In the ionization process the electron is ejected from the atom forming an A+ ion. An energy *I* (ionization energy) must be supplied.

An electron soon falls back in to the ion at the upper level and then decays to the ground state.

A photon of energy $hf = E_{\infty} - E_1$ is emitted.

AUGER PROCESS (Internal Conversion)

An emitted photon can eject an electron in a higher energy state. This is called an *Auger electron*.

The kinetic energy of the electron is just the Photon's energy hf less the ionization energy from the upper state. KEe = hf - I

In the case below hf = E3-E1 and $I = E \infty - E4$

FRANCK-HERTZ EXPERIMENT

Ι

<u>1914</u>

Franck and Hertz performed the fine experiment which directly revealed quantum energy levels of the atom.

A beam of electrons are accelerated through a potential V.

As electrons looses energy in collis with Hg atoms in the tube the anod current I drops. Thus a series of di as the acceleration and energy loss repeated over-and-over.

The dips are spaced at 4.9V or E = 4.9eV intervals.

This corresponds to the $\Delta E21$ transition in Hg.