Problem 1. Carroll problem 2.9

Problem 2. Consider an element $f\left(x^{i}\right)$ of $\Lambda^{0} V$, with $V=\mathbb{R}^{3}$ (0 -form in \mathbb{R}^{3}).
(a) Show that $d f$ is a 1 -form with components equal to $\nabla_{i} f$ (gradient of f);
(b) Show that $d^{2} f=0$;
(c) Show that $d^{2} f=0$ is equivalent to $\nabla \times(\nabla f)=0(\operatorname{curl}(\operatorname{grad} f)=0)$.

Problem 3. Consider the 2 -form in $V=\mathbb{R}^{3}$:

$$
\varphi=\varphi_{1} d x^{2} \wedge d x^{3}+\varphi_{2} d x^{3} \wedge d x^{1}+\varphi_{3} d x^{1} \wedge d x^{2}
$$

Show that $d \varphi$ is a 3 -form with component equal to the divergence of vector field φ_{i}.

Problem 4. Compute explicitly $d f$ and $d^{2} f$ for $f=\arctan \left(x^{1} / x^{2}\right) \in \Lambda^{0} R^{2}$. Show that $d^{2} f=0$ but the 2×2 matrix $T_{i j}=\partial^{2} f / \partial x^{i} \partial x^{j}$ is non-zero.

Problem 5. Show that Stoke's theorem:

$$
\int_{k} d \varphi=\int_{\partial K} \varphi
$$

coincides with usual Stoke's theorem of differential calculus (see, e.g., Jackson) if φ is a 1 -form in \mathbb{R}^{3}.

