PHYS 721 – HOMEWORK # 2 – DUE THURSDAY, SEPTEMBER 14, 2017

Problem 1. Use the conservation of the stress-energy momentum tensor, $\partial_{\alpha}T^{\alpha\beta} = 0$, where $T^{\alpha\beta} = p\eta^{\alpha\beta} + (p+\rho)U^{\alpha}U^{\beta}$ and U^{α} is the velocity four-vector, and the conservation of the number density, $\partial_{\alpha}N^{\alpha} = 0$, where $N^{\alpha} = nU^{\alpha}$, to show that the specific entropy of a perfect fluid is constant in time:

$$pd\left(\frac{1}{n}\right) + d\left(\frac{\rho}{n}\right) = kTd\sigma = 0,$$

where ρ is the energy density, p the pressure, n is the number density, σ is the specific entropy, T is the temperature, and k is Boltzmann's constant. Show all the steps of the derivation, please!

Problem 2. Carroll problem 1.9

Problem 3. Carroll problem 1.10