PHYS 721 - HOMEWORK \# 4 - DUE THURSDAY, OCTOBER 4, 2018

Problem 1. A sphere of radius a has charge uniformly distributed over its surface with charge density $Q /\left(4 \pi a^{2}\right)$, except for a spherical cap at the north pole defined by the cone $\theta=\alpha$, which is kept at zero potential. Show that the potential outside the sphere is:

$$
\phi=\frac{Q}{8 \pi \epsilon_{0} a} \sum_{l=0}^{\infty} \frac{P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)}{2 l+1}\left(\frac{a}{r}\right)^{l+1} P_{l}(\cos \theta)
$$

where $P_{-1}(\cos \alpha)$ is defined to be equal to -1 . Discuss the limiting form of the potential as the spherical cap becomes very small or very large.

Problem 2. A thin flat conducting disc of radius a is maintained at constant potential V. If the surface charge density is proportional to $1 / \sqrt{a^{2}-d^{2}}$, where d is the distance from the center of the disc:
a) Show that the potential for $r>a$ is:

$$
\phi=\frac{2 V a}{\pi r} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{2 l+1}\left(\frac{a}{r}\right)^{2 l} P_{2 l}(\cos \theta)
$$

b) Find the potential for $r<a$;
c) Find the capacitance of the disc.

Problem 3. A flat conducting ring of infinitesimal thickness, internal radius a, and external radius b is uniformly charged with total charge Q.
a) Write the three-dimensional charge distribution density in cylindrical coordinates;
b) Find the potential at a distance $r>b$ from the center of the ring.

