Problem 1. Alice moves with uniform velocity \mathbf{v} relative to Bob. Alice sees a particle with velocity \mathbf{v}_{A} and acceleration \mathbf{a}_{A}. Show that Bob measures the particle acceleration

$$
\begin{aligned}
& \mathbf{a}_{B, \|}=\frac{\left(1-\mathbf{v}^{2} / c^{2}\right)^{3 / 2}}{\left(1+\mathbf{v} \cdot \mathbf{v}_{A} / c^{2}\right)^{3}} \mathbf{a}_{A, \|}, \\
& \mathbf{a}_{B, \perp}=\frac{\left(1-\mathbf{v}^{2} / c^{2}\right)}{\left(1+\mathbf{v} \cdot \mathbf{v}_{A} / c^{2}\right)^{3}}\left[\mathbf{a}_{A, \perp}+\mathbf{v} \times\left(\mathbf{a}_{A} \times \mathbf{v}_{A}\right) / c^{2}\right],
\end{aligned}
$$

where $\mathbf{a}_{\|}$and \mathbf{a}_{\perp} are the accelerations parallel and perpendicular to \mathbf{v}, respectively.

Problem 2. Show that the following transformation forms a group with parameter α :

$$
T(\alpha)=\left\{\begin{array}{l}
\tilde{x}^{1}=\frac{x^{1}}{1-\alpha x^{1}} \\
\tilde{x}^{2}=\frac{x^{2}}{1-\alpha x^{1}}
\end{array}\right.
$$

Problem 3. (a) Write the transformation laws for the following tensors under the Lorentz group: $A^{\sigma}{ }_{\nu \mu}, A^{\mu \lambda}{ }_{\rho}, A^{\rho \nu}{ }_{\sigma \mu}$. (b) If $a_{\mu \nu}$ is a skew-symmetric rank-two tensor, show that i) $b_{\mu \nu \sigma}=\partial_{\sigma} a_{\mu \nu}+\partial_{\mu} a_{\nu \sigma}+\partial_{\nu} a_{\sigma \mu}$ is a rank-three tensor, ii) $b_{\mu \nu \sigma}$ is skew-symmetric in all pairs of indices and iii) determine the number of independent components this tensor has.

Problem 4. Consider a symmetric rank-two contravariant tensor $T^{\mu \nu}$ in the coordinate system $x^{\mu}(\mu, \nu=0,1,2,3)$. (a) Show that T is symmetric in all coordinate systems. (b) If T satisfies the condition $\partial_{\mu} T^{\mu \nu}=0$, show that

$$
\frac{d^{2}}{d t^{2}} \int d^{3} x T^{00} x^{i} x^{j}=2 \int d^{3} x T^{i j}
$$

where $i, j=1,2,3$ and $T^{\mu \nu}$ is assumed to be localized (boundary terms can be neglected).

