PHYS 622 – HOMEWORK # 3 – DUE WEDNESDAY, 3/16/2010

Problem 1. Alice moves with uniform velocity \mathbf{v} relative to Bob. Alice sees a particle with velocity \mathbf{v}_A and acceleration \mathbf{a}_A . Show that Bob measures the particle acceleration

$$\mathbf{a}_{B,\parallel} = \frac{(1 - \mathbf{v}^2/c^2)^{3/2}}{(1 + \mathbf{v} \cdot \mathbf{v}_A/c^2)^3} \mathbf{a}_{A,\parallel} \,,$$

$$\mathbf{a}_{B,\perp} = \frac{(1 - \mathbf{v}^2/c^2)}{(1 + \mathbf{v} \cdot \mathbf{v}_A/c^2)^3} [\mathbf{a}_{A,\perp} + \mathbf{v} \times (\mathbf{a}_A \times \mathbf{v}_A)/c^2],$$

where \mathbf{a}_{\parallel} and \mathbf{a}_{\perp} are the accelerations parallel and perpendicular to \mathbf{v} , respectively.

Problem 2. Show that the following transformation forms a group with parameter α :

$$T(\alpha) = \begin{cases} \tilde{x}^{1} &=& \frac{x^{1}}{1 - \alpha x^{1}}, \\ \tilde{x}^{2} &=& \frac{x^{2}}{1 - \alpha x^{1}}. \end{cases}$$

Problem 3. (a) Write the transformation laws for the following tensors under the Lorentz group: $A^{\sigma}{}_{\nu\mu}$, $A^{\mu\lambda}{}_{\rho}$, $A^{\rho\nu}{}_{\sigma\mu}$. (b) If $a_{\mu\nu}$ is a skew-symmetric rank-two tensor, show that *i*) $b_{\mu\nu\sigma} = \partial_{\sigma}a_{\mu\nu} + \partial_{\mu}a_{\nu\sigma} + \partial_{\nu}a_{\sigma\mu}$ is a rank-three tensor, *ii*) $b_{\mu\nu\sigma}$ is skew-symmetric in all pairs of indices and *iii*) determine the number of independent components this tensor has.

Problem 4. Consider a symmetric rank-two contravariant tensor $T^{\mu\nu}$ in the coordinate system x^{μ} ($\mu, \nu = 0, 1, 2, 3$). (a) Show that T is symmetric in all coordinate systems. (b) If T satisfies the condition $\partial_{\mu}T^{\mu\nu} = 0$, show that

$$\frac{d^2}{dt^2} \int d^3x \, T^{00} x^i x^j = 2 \int d^3x \, T^{ij} \,,$$

where i, j = 1, 2, 3 and $T^{\mu\nu}$ is assumed to be localized (boundary terms can be neglected).