Problem 1. Calculate the time-averaged power radiated per unit solid angle and the total power radiated by a non-relativistic particle with charge e moving:
a) Along the z axis with displacement $z(t)=z_{0} \sin \left(\omega_{0} t\right)$;
b) In a circle of radius R in the $x y$ plane with constant angular frequency ω_{0}.

Problem 2. Jackson problem 14.11.

Problem 3. A non-relativistic particle of charge $z e$, mass m, and initial speed v_{0} scatters on a fixed nucleus of atomic number Z at an impact parameter b. Assuming that the deflection of the particle is negligible, show that the total energy radiated is

$$
W=\frac{\pi z^{4} Z^{2} e^{6}}{3 m^{2} c^{3} v_{0} b^{3}}
$$

