1. Millikan experiment. A spherical oil drop of radius $R=3 \times 10^{-5} \mathrm{~cm}$ and density $\rho=0.822 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ is placed between two parallel conducting plates at $z=0$ and $z=d$, where $d=0.5 \mathrm{~cm}$. The electrical potential difference between the two plates is 14 V. Compute the electric charge that the drop must have to be kept in equilibrium between the two plates.
2. Transfer of charge. Three identical small conducting spheres, A, B and C are held still at the vertices of an equilateral triangle. A and B carry charges $4 q$ and q, respectively. C is not charged. C is first brought to contact with A and relocated to its original position, then it is brought to contact with B and relocated to its original position. (a) Compute the ratio of the force between A and B before and after this process. (b) Compute the ratio of the force between B and C after the first and the second step of the process.

Key

Unless otherwise specified, problems are from the course textbook:
David J. Griffiths
INTRODUCTION TO ELECTRODYNAMICS
Pearson, Addison Wesley
ISBN-10: 0321856562, ISBN-13: 978-0321856562
Problem X.Y p.Z means "Problem No. Y of Chapter X, page Z."
Example: Problem 2.1 p. $29=$ Problem No. 1 of Chapter 2, page 29.

