Student name: ____

5-minute Quiz #9

Answer these two questions:

1. In a pairs skating competition a male 80-kg skater is carrying his 40-kg partner. The couple is gliding backward at a constant speed of -3 m/s with respect to the rink. What is the momentum of the couple with respect to the rink? [2 points] What is the speed of the male skater after he throws his partner forward at a speed 1.50 m/s relative to the ice? [3 points]

2. A 500-kg cannon fires a 20-kg cannon ball at a speed of 400 m/s. The explosion lasts 1 ms. What is the recoil speed of the cannon? [3 points]. What is the average force applied by the ball on the cannon? [2 points]

Key Equations

Definition of momentum	$ec{\mathbf{p}}=mec{\mathbf{v}}$
Impulse	$ec{J}\equiv\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}}ec{F}(t)dt\mathrm{or}ec{\mathbf{J}}=ec{\mathbf{F}}_{\mathrm{ave}}arDelta t$
Impulse-momentum theorem	$\mathbf{ec{J}}=arDelta \mathbf{ec{p}}$
Average force from momentum	$ec{\mathbf{F}} = rac{arDelta ec{\mathbf{p}}}{arDelta t}$
Instantaneous force from momentum	$ec{\mathbf{F}}(t) = rac{dec{\mathbf{p}}}{dt}$
(Newton's second law)	
Conservation of momentum	$\frac{d\vec{\mathbf{p}}_1}{dt} + \frac{d\vec{\mathbf{p}}_2}{dt} = 0 \ \text{or} \ \vec{\mathbf{p}}_1 + \vec{\mathbf{p}}_2 = \text{constant}$
Generalized conservation of momentum	$\sum_{j=1}^{N} ec{\mathbf{p}}_{\mathbf{j}} = ext{constant}$
Conservation of momentum in two dimensions	$p_{{ m f},x} = p_{1,{ m i},x} + p_{2,{ m i},x} \ p_{{ m f},y} = p_{1,{ m i},y} + p_{2,{ m i},y}$
External forces	$ec{\mathbf{F}}_{ ext{ext}} = \sum_{j=1}^{N} rac{dec{\mathbf{p}}_{j}}{dt}$
Newton's second law for an extended object	$ec{\mathbf{F}} = rac{dec{\mathbf{p}}_{ ext{CM}}}{dt}$
Acceleration of the center of mass	$ec{\mathbf{a}}_{ ext{CM}} = rac{d^2}{dt^2} igg(rac{1}{M} \sum_{j=1}^N m_j ec{\mathbf{r}}_j igg) = rac{1}{M} \sum_{j=1}^N m_j ec{\mathbf{a}}_j$
Position of the center of mass for a system	$ec{\mathbf{r}}_{ ext{CM}} \equiv rac{1}{M}\sum_{i=1}^N m_j ec{\mathbf{r}}_j$
of particles	$_{j=1}$
Velocity of the center of mass	$ec{\mathbf{v}}_{ ext{CM}} = rac{d}{dt} \left(rac{1}{M} \sum_{j=1}^N m_j ec{\mathbf{r}}_j ight) = rac{1}{M} \sum_{j=1}^N m_j ec{\mathbf{v}}_j$
Position of the center of mass of a	$ec{\mathbf{r}}_{ ext{CM}} \equiv rac{1}{M} \int ec{\mathbf{r}} dm$

continuous object