	Student name:
5-minute Quiz #7	

1. A woman of mass 50 kg runs up a flight of stairs with inclination of 30° and height of 20 m. How much power the woman uses if she reaches the top of the stairs in 10 s? [5 points]

Answer these two questions:

2. Consider a particle on which a constant force $\vec{\mathbf{F}} = (3N)\hat{\imath} + (4N)\hat{\jmath}$. As a result, the particle moves along a straight path from a Cartesian coordinate of (0 m, 0 m) to (5 m, 6 m). What is the work done by $\vec{\mathbf{F}}$? /5 points

Key Equations

Work done by a force over an infinitesimal displacement	$dW = \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}} = \left \overrightarrow{\mathbf{F}} \right \left d\overrightarrow{\mathbf{r}} \right \cos heta$
Work done by a force acting along a path from A to B	$W_{AB} = \int\limits_{\mathrm{path}AB} ec{\mathbf{r}} \cdot dec{\mathbf{r}}$
Work done by a constant force of kinetic friction	$W_{ m fr} = -f_k l_{AB} $
Work done going from A to B by Earth's gravity, near its surface	$W_{\mathrm{grav},AB}=-mg\left(y_{B}-y_{A} ight)$
Work done going from A to B by one-dimensional spring force	$W_{ ext{spring},AB} = -\left(rac{1}{2}k ight)\left(x_B^2 - x_A^2 ight)$
Kinetic energy of a non-relativistic particle	$K=rac{1}{2}mv^2=rac{p^2}{2m}$
Work-energy theorem	$W_{ m net} = K_B - K_A$
Power as rate of doing work	$P=rac{dW}{dt}$
Power as the dot product of force and velocity	$P = \vec{\mathbf{F}} \cdot \vec{\mathbf{v}}$