Student name: ____

5-minute Quiz #14

Answer these two questions:

A 1-kg wood log is floating on pure fresh water at a temperature of 4° C. The density of the log is 500 kg/m³. (a) What is the volume of the log? [2 points] (b) What fraction of the log will be submerged? [2 points]

2. A hose of radius 8 cm and length 20 m is laying on the ground and carries a water flow of 10.0 L/s (Note: $1 L = 10^{-3} m^3$). (a) What is the velocity of the water in the hose? [3 points] (b) What is the pressure drop due to the Bernoulli effect if one end of the hose is raised to a height of 10 meters? [3 points]

Key Equations

Density of a sample at constant density	$ ho = rac{m}{V}$
Pressure	$p = \frac{F}{A}$
Pressure at a depth h in a fluid of constant density	$p=p_0+ ho gh$
Change of pressure with height in a	$rac{dp}{dy} = - ho g$
constant-density fluid	-3
Absolute pressure	$p_{ m abs} = p_{ m g} + p_{ m atm}$
Pascal's principle	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$
Volume flow rate	$Q = \frac{dV}{dt}$
Continuity equation (constant density)	$A_1v_1 = A_2v_2$
Continuity equation (general form)	$\rho_1 A_1 v_1 = \rho_2 A_2 v_2$
Bernoulli's equation	$p+rac{1}{2} ho v^2+ ho gy= ext{constant}$
Viscosity	$\eta = rac{FL}{vA}$
Poiseuille's law for resistance	$R = rac{8\eta l}{\pi r^4}$
Poiseuille's law	$Q=rac{(p_2-p_1)\pi r^4}{8\eta l}$