Student name: ____

5-minute Quiz #11

Answer these two questions:

1. A race car with mass 500.0 kg enters a circular turn at 360.0 km/h in the counterclockwise direction about the origin of the circle. The radius of curvature of the turn is 100.0 m. Compute the angular momentum of the car. [5 points]

2. A disk of mass 2.0 kg and radius 50 cm with a small mass of 0.1 kg attached at the edge is rotating at 2.0 rev/s. The small mass suddenly separates from the disk. What is the disk's final rotation rate in rev/s? [5 points] NOTE: The moment of inertia of a disk of radius R and mass M about its axis is $I = MR^2/2$. The moment of inertia of a mass M at a distance R from the origin is MR^2 .

Key Equations

Velocity of center of mass of rolling object	$v_{ m CM}=R\omega$
Acceleration of center of mass of rolling object	$a_{ m CM}=Rlpha$
Displacement of center of mass of rolling object	$d_{ m CM}=R heta$
Acceleration of an object rolling without slipping	$a_{ m CM} = rac{mg\sin heta}{m+(I_{ m CM}/r^2)}$
Angular momentum	$\vec{l} = \vec{r} imes \vec{p}$
Derivative of angular momentum equals torque	$rac{dec{\mathbf{l}}}{dt} = \sum ec{oldsymbol{ au}}$
Angular momentum of a system of particles	$ec{\mathbf{L}}=ec{\mathbf{l}}_1+ec{\mathbf{l}}_2+\cdots+ec{\mathbf{l}}_N$
For a system of particles, derivative of angular	$rac{dec{\mathbf{L}}}{dt} = \sum ec{oldsymbol{ au}}$
momentum equals torque	
Angular momentum of a rotating rigid body	$L = I\omega$
Conservation of angular momentum	$rac{dec{\mathbf{L}}}{dt}=0$
Conservation of angular momentum	$ec{\mathbf{L}}=ec{\mathbf{l}}_1+ec{\mathbf{l}}_2+\cdots+ec{\mathbf{l}}_N= ext{constant}$