ANNOUNCEMENTS

e Homework #4, due Monday, September 17:

Conceptual questions: Chapter 4, #6 and #10
Problems: Chapter 4, #26, #42

e Read Sections 4.4-4.5 before next class (Friday)

e 5-minute quiz on Chapter 4.
Wednesday, September 19 at beginning of class

e First in-class test will be Friday, September 21




MOTION IN TWO AND THREE DIMENSIONS

Zi
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PXx(D), y(1), 2(1))

A three-dimensional coordinate system with a particle at position P(x(t), y(t), z(t)).

F(1) = x(0i + y(1)] + z(Dk. (4.2)




DISPLACEMENT
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Zi

The displacement A7 = 7(t,) — 7(t,) is the vector from P, to Ps.



WORKING WITH VECTORS

Two position vectors are drawn from the center of
Earth, which is the origin of the coordinate system, with
the y-axis as north and the x-axis as east. The vector
between them is the displacement of the satellite.

In unit vector notation, the position vectors are

¥(1;) = 6770. kmj
¥(f;) = 6770. km (cos 45°)i + 6770. km (sin(—45°));].

Evaluating the sine and cosine, we have

T() = 6770
T(ry) = 47871 —4787].

Now we can find AT, the displacement of the satellite:

AT = F(1y) — F(t)) = 47871 — 11,557].

The magnitude of the displacement is |&?( = \/(4?8?)2 + (—11,557)* = 12,509 km. The angle the displacement makes with

—1L557\ _ /- co
4787 ) = —67.5".

the x-axis is @ = tan™! (




VELOCITY
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A particle moves along a path given by the gray line. In the limit as At approaches zero,
the velocity vector becomes tangent to the path of the particle.

r(t+ AN —T() _ dr

(4.4)

v(7) = lim

Ar—0 At T odt




Equation 4.4 can also be written in terms of the components of?(t). Since

E(1) = x(Di + y(1)] + 20k,

we can write

V(D) = v, (01 + v, (0] + v,k

where

_ dx() _dy@® o dz(D)
)= — = wO=—m v =—)

If only the average velocity is of concern, we have the vector equivalent of the one-dimensional average velocity for two and three
dimensions:

— -
; . r(f) —r(f)
" h—t

(4.5)

(4.6)

(4.7)




EXAMPLE 4.3

Calculating the Velocity Vector
The position function of a particle is F(r) =207 + (2.0 + 3.0r)j + 5.0rkm. (a) What is the instantaneous velocity and
speed att = 2.0 s? (b) What is the average velocity between 1.0 s and 3.0 s7?

Solution
Using Equation 4.5 and Equation 4.6, and taking the derivative of the position function with respect to time, we find

@ v(t) = T2 = 4,04 + 3.0j + 5.0km/s

dt

V(2.0s) = 8.0i + 3.0j + 5.0km/s

Speed [¥(2.0s)| = /8% +32 + 52 = 9.9 mys.

(b) From Equation 4.7,

3 _ HL)-r(n) _ F30s)-r(1.0s) _ (18i+11j+15k) m—(2i+5j+5k) m
e T -, T 30s-10s 20s

. (lﬁi+6}+1ﬂﬂ} m - - -
= ——5—— = 8.0i +3.0j + 5.0km/s.
Significance
We see the average velocity is the same as the instantaneous velocity at t = 2.0 s, as a result of the velocity function

being linear. This need not be the case in general. In fact, most of the time, instantaneous and average velocities are not

the same.




V(i + AN = V(1) dV()

a(n = li (4.8)
a(n) rl—r-ll:l1 Ar dr
The acceleration in terms of components is
- dvi(f);  dvy() 2  dv. (D)=
1) = ' —k. 4.9
a() dt ' dr I+ dt (4-9)

Also, since the velocity is the derivative of the position function, we can write the acceleration in terms of the second derivative of
the position function:

d*x(t)» d*y(0). d*z(t) ~
I()i_l_ Jf()._l_ ()k_

(4.10)
dt? dr? ) dt?

a(n) =




EXAMPLE 4.5

Finding a Particle Acceleration

A particle has a position function F(r) = (10r — rz)i + Srj + SIEm. (a) What is the velocity? (b) What is the
acceleration? (c) Describe the motion fromt =0 s.

Strategy

We can gain some insight into the problem by looking at the position function. It is linear in y and 2, so we know the
acceleration in these directions is zero when we take the second derivative. Also, note that the position in the x direction
iszerofort=0sandt=10s.

Solution
(a) Taking the derivative with respect to time of the position function, we find

V(1) = (10 — 20)i + 5] + 5k m/s.
The velocity function is linear in time in the x direction and is constant in the y and z directions.

(b) Taking the derivative of the velocity function, we find

a(r) = —2i m/s.

The acceleration vector is a constant in the negative x-direction.




FIGURE 4.9
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The particle starts at point (x, y, z) = (0,
0, 0) with position vector ¥ = 0. The

Z (m)
projection of the trajectory onto the xy- |
plane is shown. The values of y and z
increase linearly as a function of time, i °1=10s

whereas x has a turning point at t=5s
and 25 m, when it reverses direction. At
this point, the x component of the
velocity becomes negative. Att =10 s,
the particle is back to 0 m in the x
direction.

x (m)

INDEPENDENCE OF MOTION

In the kinematic description of motion, we are able to treat the horizontal and vertical components of motion separately. In
many cases, motion in the horizontal direction does not affect motion in the vertical direction, and vice versa.




SPECIAL CASE:

CONSTANT ACCELERATION

X(1) = Xo + (Vi) gye!
V(1) = v, + a,t
x(f) = Xo + vl + %alrz
Vi) = v3, + 2a,(x — xp)
Y1) = Yo + (Vy) 1
V(1) = Vo, + ayt

L,
(1) = yo +vod + Ea_‘.r‘

vi(f) = v, + 2a,(y — yo)-

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)




SPECIAL CASE: CONSTANT VELOCITY IN ONE DIRECTION

Horizontal motion,

s ﬁr constant velocity

Vertical motion,
constant acceleration

A diagram of the motions of two identical
balls: one falls from rest and the other
has an initial horizontal velocity. Each
subsequent position is an equal time
interval. Arrows represent the horizontal
and vertical velocities at each position.
The ball on the right has an initial
horizontal velocity whereas the ball on
the left has no horizontal velocity.
Despite the difference in horizontal
velocities, the vertical velocities and
positions are identical for both balls,
which shows the vertical and horizontal
motions are independent.



ANNOUNCEMENTS

e Homework #4, due Monday, September 17:

Conceptual questions: Chapter 4, #6 and #10
+ Problems: Chapter 4, #26, #42

e 5-minute quiz on Chapter 4.
Wednesday, September 19 at beginning of class

e First in-class test will be Friday, September 21




PARABOLIC (PROJECTILE) MOTION

Yi
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The total displacement s of a soccer ball at a point along its path. The vector s has
components ¥ and y along the horizontal and vertical axes. Its magnitude is s and it
makes an angle 6 with the horizontal.




PARABOLIC (PROJECTILE) MOTION

Horizontal Motion

VD_-l- = V_\', X = xﬂ + 1"4‘1”

Vertical Motion

1
Y=o+ E(Vo_v + vt
v, = v, — gt
1

¥ = Yo + Vol = 8l -

¥ 3
v2 =3, — 200y — o)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)




PARABOLIC (PROJECTILE) MOTION
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Vv,

o2

(e} Vertical i () Total veloity

EI:I'I'I.FH:II'IEI'IIZ
constant
acceleration

W,
2

at a point

We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the vertical and horizontal

axes.

The horizontal motion is simple, because a, = 0 and v, is a constant.

The velocity in the vertical direction begins to decrease as the object rises. At its highest point, the vertical velocity is zero. As the object falls
toward Earth again, the vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical velocity.

The x and y motions are recombined to give the total velocity at any given point on the trajectory.
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Trajectories of projectiles on level
ground.

(a) The greater the initial speed v, the
greater the range for a given initial
angle.

(b) The effect of initial angle 8, on the
range of a projectile with a given
initial speed. Note that the range is
the same for initial angles of 15° and
75°, although the maximum heights
of those paths are different.

FIGURE 4.15
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PARABOLIC (PROJECTILE) MOTION PP

Golf Shot
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Two trajectories of a golf ball with a range of 90 m. The impact points of both are at the
same level as the launch point.




Problem-Solving Strategy: Projectile Motion

1. Resolve the motion into horizontal and vertical components along the x- and y-axes. The magnitudes of the

components of displacement?‘: along these axes are x and y. The magnitudes of the components of velocity Vv are
v, = vcos#d and v, = vsin#, where v is the magnitude of the velocity and 8 is its direction relative to the
horizontal, as shown in Eigure 4.12.

2. Treat the motion as two independent one-dimensional motions: one horizontal and the other vertical. Use the
kinematic equations for horizontal and vertical motion presented earlier.

3. Solve for the unknowns in the two separate motions: one horizontal and one vertical. Note that the only common
variable between the motions is time t. The problem-solving procedures here are the same as those for one-
dimensional kinematics and are illustrated in the following solved examples.

4. Recombine quantities in the horizontal and vertical directions to find the total displacement§ and velocity V. Solve
for the magnitude and direction of the displacement and velocity using

s=4/x*+y", O=tan"'(kx)., v= \/m

where @ is the direction of the displacememg.




EXAMPLE
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The trajectory of a fireworks shell. The

fuse is set to explode the shell at the
Yi highest point in its trajectory, which is
found to be at a height of 233 m and

125 m away horizontally.
h=233m

=V

x=125m



Solution

(a) By “height” we mean the altitude or vertical position y above the starting point. The highest point in any trajectory,
called the apex, is reached when v, = (. Since we know the initial and final velocities, as well as the initial position, we
use the following equation to find y:

vy = vg, — 280y — Yo)-

Because y; and v, are both zero, the equation simplifies to

0=v; —2gy.

Solving for y gives

2
Viy

=t

; 2¢

Now we must find vy, the component of the initial velocity in the y direction. It is given by vy, = vosindy, where v is the

initial velocity of 70.0 m/s and ; = 75° is the initial angle. Thus,

Vo, = Vosiné = (70.0 m/s)sin 75° = 67.6 m/s

and y is

~_ (67.6m/s)’
7T 209.80 m/s?)”

Thus, we have

y=233m.




(b) As in many physics problems, there is more than one way to solve for the time the projectile reaches its highest point.
In this case, the easiest method is to use v, = v, — gf. Because v, = 0 at the apex, this equation reduces to simply

0 =vgy, — gt
or
Vo 67.6 m/s
[= — = = 6.90s
g2 9.80 m/s?2

This time is also reasonable for large fireworks. If you are able to see the launch of fireworks, notice that several seconds
pass before the shell explodes. Another way of finding the time is by usingy = yo + %(l’q\. + v, )t. This is left for you as
an exercise to complete.

(c) Because air resistance is negligible, a, = 0 and the horizontal velocity is constant, as discussed earlier. The
horizontal displacement is the horizontal velocity multiplied by time as given by x = x; + v, I, where x; is equal to zero.
Thus,

X =Vl

where v, is the x-component of the velocity, which is given by

v, = vgcos@ = (70.0 m/s)cos75° = 18.1 m/s.

Time t for both motions is the same, so x is

x=(18.1 m/s)6.90s = 125 m.

Harizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could be
useful in keeping the fireworks fragments from falling on spectators. When the shell explodes, air resistance has a major
effect, and many fragments land directly below.




USEFUL EQUATIONS

TIME OF FLIGHT

TRAJECTORY

RANGE

2(vpsindy)
Tior = .

v = (tanfy )x — [L] x2.

2(vgcos 6',3)2

L-'ésin%'[}

1

(4.24)

(4.25)

(4.26)




ORBITS

openstax™

Projectile to satellite. In each case shown
here, a projectile is launched from a very
high tower to avoid air resistance. With
increasing initial speed, the range
increases and becomes longer than it
would be on level ground because Earth
curves away beneath its path. With a
speed of 8000 m/s, orbit is achieved.



UNIFORM CIRCULAR
MOTION
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vt vit + Af J

(a) A particle is moving in a circle at a constant speed, with positﬁ%n and velocity
vectors at times t and t + At.

(b) Velocity vectors forming a triangle. The two triangles in the figure are similar. The
vector AV points toward the center of the circle in the limit At — 0.

(4.27)




EXAMPLE 4.10

Creating an Acceleration of 1 g

A jetis flying at 134.1 m/s along a straight line and makes a turn along a circular path level with the ground. What does
the radius of the circle have to be to produce a centripetal acceleration of 1 g on the pilot and jet toward the center of the
circular trajectory?

Strategy
Given the speed of the jet, we can solve for the radius of the circle in the expression for the centripetal acceleration.

Solution
Set the centripetal acceleration equal to the acceleration of gravity: 9.8 m/s? = v2/r.

Solving for the radius, we find

(134.1 m/s)?
r =
9.8 m/s>

= 1835 m = 1.835 km.

Significance
To create a greater acceleration than g on the pilot, the jet would either have to decrease the radius of its circular
trajectory or increase its speed on its existing trajectory or both.




openstax® CENTRIPETAL ACCELERATION

The centripetal acceleration vector points
toward the center of the circular path of

Y
motion and is an acceleration in the
radial direction. The velocity vector is
also shown and is tangent to the circle. -



yi ——
ANGULAR Dp;mx”
FREQUENCY Fo)
0 = wt [F(t)|sihet
v=T [¥(t)|coswt &

The position vector for a particle in circular motion with its components along the x- and
y-axes. The particle moves counterclockwise. Angle 8 is the angular frequency in
radians per second multiplied by t.

r(1) = Acoswi + Asin wfj. (4.28)




CIRCULAR MOTION: POSITION, VELOCITY AND
ACCELERATION

r(1) = Acoswifi + Asin ofj. (4.28)
dr(t . .
V() = lc.z‘(f) = —Awsin wh + Aw cos wi]. (4.29)
L dv)

a(r) —— = —Aw? cos wfi — Aw?® sin wij. (4.30)




NON-UNIFORM CIRCULAR MOTION

3

—_
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The centripetal acceleration points
toward the center of the circle. The
tangential acceleration is tangential to
the circle at the particle’s position. The
total acceleration is the vector sum of the
tangential and centripetal accelerations,
which are perpendicular.

(4.31)




TANGENTIAL ACCELERATION
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a (a|=1.5mis?)

The tangential and centripetal acceleration vectors. The net acceleration is the vector
sum of the two accelerations.




RELATIVE MOTION

openstax”

The positions of particle P relative to
frames S and S’ are rpg and 1,
respectively.

x¥




ADDITION OF VELOCITIES
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10 m/s = # V. Velocity of train with respect to Earth
-2 mls - Vo Velocity of person with respect to train
8 m/s i\ VeloCity of person with respect to Earth

Velocity vectors of the train with respect to Earth, person with respect to the train, and
person with respect to Earth.




EXAMPLE
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Yer="Yee " Ver

Vee

Vector diagram of the vector equation Vor = Vg + Vgr.




EXAMPLE
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N
Vector diagram for Equation 4.34
showing the vectors Vp,, Vag, Vpg. w E
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