ANNOUNCEMENTS

e Homework #12, due Friday, Nov. 16 before class

Conceptual questions: Chapter 12, #4 and #10
Problems: Chapter 12, #32, #38

e Study Chapter 12, sections 1 and 2

e Quiz #12, Friday November 16 at the beginning of class



FIRST EQUILIBRIUM CONDITION

The first equilibrium condition for the static equilibrium of a rigid body expresses translational equilibrium:

Z F, =0. (12.2)
-

Y Fu=0, Y Fy=0 Y Fc=

k k k

SECOND EQUILIBRIUM CONDITION

The second equilibrium condition for the static equilibrium of a rigid body expresses rotational equilibrium:

Z 7, =0. (12.5)

k

Z 7, = 0, Z T, = 0, Z 7. = 0.
k k k
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Torque of a force:

(a) When the torque of a force causes counterclockwise rotation about the axis of rotation, we say
that its sense is positive, which means the torque vector is parallel to the axis of rotation.

(b) When torque of a force causes clockwise rotation about the axis, we say that its sense is
negative, which means the torque vector is antiparallel to the axis of rotation.
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(b)

The distribution of mass affects the position of the center of mass (CM), where the weight vector w
is attached. If the center of gravity is within the area of support, the truck returns to its initial position
after tipping [see the left panel in (b)]. But if the center of gravity lies outside the area of support, the
truck turns over [see the right panel in (b)]. Both vehicles in (b) are out of equilibrium. Notice that the
carin (2) is in equilibrium: The low location of its center of gravity makes it hard to tip over.




Center of Gravity of a Car
A passenger car with a 2.5-m wheelbase has 52% of its weight on the front wheels on level ground, as illustrated in
Figure 12.4. Where is the CM of this car located with respect to the rear axle?




The free-body diagram for the car clearly indicates force vectors acting on the car and
distances to the center of mass (CM). When CM is selected as the pivot point, these distances
are lever arms of normal reaction forces. Notice that vector magnitudes and lever arms do not
need to be drawn to scale, but all quantities of relevance must be clearly labeled.




Solution
Each equilibrium condition contains only three terms because there are N = 3 forces acting on the car. The first
equilibrium condition, Equation 12.7, reads

+Fr —w+ Fgp =0. (12.11)

This condition is trivially satisfied because when we substitute the data, Equation 12.11 becomes
+0.52w — w + 0.48w = 0. The second equilibrium condition, Equation 12.9, reads

e+ T+ =0 (12.12)

where 7 is the torque of force Fg, 7, is the gravitational torque of force w, and 7y is the torque of force F . When the
pivot is located at CM, the gravitational torque is identically zero because the lever arm of the weight with respect to an
axis that passes through CM is zero. The lines of action of both normal reaction forces are perpendicular to their lever
arms, so in Equation 12.10, we have | sin &| = 1 for both forces. From the free-body diagram, we read that torque g
causes clockwise rotation about the pivot at CM, so its sense is negative; and torque g causes counterclockwise rotation
about the pivot at CM, so its sense is positive. With this information, we write the second equilibrium condition as

—F'FFF + .'"RFR = 0 (1213)

With the help of the free-body diagram, we identify the force magnitudes Fr = 0.48w and Fg = 0.52w, and their
corresponding lever arms rg = x and rg = d — x. We can now write the second equilibrium condition, Equation 12.13,
explicitly in terms of the unknown distance x:

—0.52(d — x)w + 0.48xw = 0. (12.14)

Here the weight w cancels and we can solve the equation for the unknown position x of the CM. The answer is
x=0.52d =0.52(2.5m) = 1.3 m.




DIY
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Pivot

This example shows that when solving static equilibrium problems, we are free to choose the pivot location. For different
choices of the pivot point we have different sets of equilibrium conditions to solve. However, all choices lead to the same
solution to the problem.




A Breaking Tension

A small pan of mass 42.0 g is supported by two strings, as shown in Eigure 12.7. The maximum tension that the string

can support is 2.80 N. Mass is added gradually to the pan until one of the strings snaps. Which string is it? How much
mass must be added for this to occur?

5.0cm 10.0 cm




SOLUTION
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The weight w pulling on the knot is due to the mass M of the pan and mass m added to the pan, or w = (M + m)g. With
the help of the free-body diagram in Eigure 12.8, we can set up the equilibrium conditions for the knot:

in the x-direction, T+, = 0
in the y-direction, +T, + Ty —w = 0.
From the free-body diagram, the magnitudes of components in these equations are
T\ = Ticos ay = T /v/5, Ty, = Tysina; = 2T, /V/5
T?..\' = TECU‘S ar = 2T2)’\X§, Tz_\. = T2 sin ay = Tzi\/g

We substitute these components into the equilibrium conditions and simplify. We then obtain two equilibrium equations for
the tensions:

in x-direction, T, = 20,
A 2
in y-direction, 75 + = = (M +m)g.

The equilibrium equation for the x-direction tells us that the tension T in the 5.0-cm string is twice the tension T3 in the
10.0-cm string. Therefore, the shorter string will snap. When we use the first equation to eliminate 7> from the second
equation, we obtain the relation between the mass m on the pan and the tension T} in the shorter string:

2.5T\/\/5 = (M + m)g.

24 = The string breaks when the tension reaches the critical value of 7} = 2.80 N. The preceding equation can be solved for

the critical mass m that breaks the string:

2.5 T, e 2.5 2.80N
V3 g ~ /5 9.8 m/s2

—0.042kg = 0277 kg = 2770 ¢.




The Torque Balance

Three masses are attached to a uniform meter stick, as shown in Figure 12.9. The mass of the meter stick is 150.0 g and
the masses to the left of the fulcrum are m; = 50.0 g and m> = 75.0 g. Find the mass m3 that balances the system
when it is attached at the right end of the stick, and the normal reaction force at the fulcrum when the system is balanced.

|+— 30 cm —=}«—— 40 cm ——=}=— 30 cm —
| | I I I
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riy = 300cm+40.0cm =70.0cm
r» = 40.0cm
r = 50.0cm—-30.0cm = 20.0cm
r¢ = 0.0 cm (because Fy is attached at the pivot)
ry = 30.0cm.

Now we can find the five torques with respect to the chosen pivot:

+rywysin 90° = +rym; g (counterclockwise rotation, positive sense)
+rawasin 90° = +rma g (counterclockwise rotation, positive sense)
+rw sin 90° = +rmg (gravitational torque)

r¢Fg¢sin 8¢ = 0 (because rg = 0 cm)

—r3ws3sin 90° = —ryms g (clockwise rotation, negative sense)




k y \

I
The second equilibrium condition (equation for the torques) for the meter stick is

1+t +17+15+73 =0.
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When substituting torque values into this equation, we can omit the torques giving zero contributions. In this way the

second equilibrium condition is

+rimyg + ramy g + rmg — rsms g = 0.

Selecting the +y-direction to be parallel to ]_?'5, the first equilibrium condition for the stick is

—W —11'2—W+F5—W3 =0.

Substituting the forces, the first equilibrium condition becomes

—mg—mrg—mg+Fg—myg=0.

(12.17)

(12.18)
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We solve these equations simultaneously for the unknown values my and Fs. In Equation 12.17, we cancel the g factor
and rearrange the terms to obtain

rsmy = rymy + rofy + rm.

To obtain m; we divide both sides by r5, so we have

my = myp+omy 4 m (12.19)
=85500g) + 2L (75.0g) + 2(150.0g) = 31602 g~ 317 g.
30 30 30 3
To find the normal reaction force, we rearrange the terms in Equation 12.18, converting grams to kilograms:
12.20
Fs =(m +m +m+m3)g ( )

= (50.0 + 75.0 + 150.0 + 316.7) x 10'kg x 9.8 f—f =5.8N.




Forces in the Forearm
A weightlifter is holding a 50.0-Ib weight (equivalent to 222.4 N) with his forearm, as shown in Figure 12.11. His forearm is

positioned at f/ = 60° with respect to his upper arm. The forearm is supported by a contraction of the biceps muscle,
which causes a torgue around the elbow. Assuming that the tension in the biceps acts along the vertical direction given by
gravity, what tension must the muscle exert to hold the forearm at the position shown? What is the force on the elbow
joint? Assume that the forearm's weight is negligible. Give your final answers in Sl units.




Free-body diagram for the forearm: The pivot is located at point E (elbow).




A Ladder Resting Against a Wall

A uniform ladder is L = 5.0 m long and weighs 400.0 N. The ladder rests against a slippery vertical wall, as shown in
Figure 12.14. The inclination angle between the ladder and the rough floor is # = 53°. Find the reaction forces from the
floor and from the wall on the ladder and the coefficient of static friction y at the interface of the ladder with the floor that

prevents the ladder from slipping.

i




From the free-body diagram, the net force in the x-direction is

+f—-F=0

the net force in the y-direction is

+N —-—w=20

and the net torque along the rotation axis at the pivot point is

7w+ 77 = 0.

7, = r,wsin 6, = r,wsin(180° + 90° — f) = —Lwsin(90° - ) = —Lwcos
T = rpF sin O = rpF sin(180° — f) = LF sin .

We substitute the torques into Equation 12.30 and solve for F :

—%w cosf+LFsinff = 0 (12.31)
F=Y%cotf=200cot53° = 150.7N

We obtain the normal reaction force with the floor by solving Equation 12.29: N = w = 400.0 N. The magnitude of
friction is obtained by solving Equation 12.28: f = F = 150.7 N. The coefficient of static friction is
us = f/N = 150.7/400.0 = 0.377.
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