ANNOUNCEMENTS

e Homework #11, due Friday, Nov. 9 before class

Conceptual questions: Chapter 11, #8 and #14
Problems: Chapter 11, #48, #56

e Study Chapter 11, sections 1 through 3

e Quiz #11, Friday November 9 at the beginning of class
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ROLLING MOTION
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(a) (b)

(a) The bicycle moves forward, and its tires do not slip. The bottom of the slightly deformed tire is at rest
with respect to the road surface for a measurable amount of time.

(b) This image shows that the top of a rolling wheel appears blurred by its motion, but the bottom of the
wheel is instantaneously at rest. (credit a: modification of work by Nelson Lourenco; credit b:
modification of work by Colin Rose)
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(a) Forces on the wheel (b) Wheel rolls without slipping (c) Point P has velocity

vector in the negative
direction with respect to
the center of mass of
the wheel

(2) Awheel is pulled across a horizontal surface by a force F. The force of static friction fs, |f5| < ugN is large
enough to keep it from slipping.

(b) The linear velocity and acceleration vectors of the center of mass and the relevant expressions for w and «. Point
P is at rest relative to the surface.

(c) Relative to the center of mass (CM) frame, point P has linear velocity —Rwf.




FIGURE 11.4
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Arc length AB maps onto wheel's surface

Fidcm

As the wheel rolls on the surface, the arc length R0 from A to B maps onto the surface,
corresponding to the distance d.y that the center of mass has moved.

dcu = R6. EE— Vem = Rw. - dey — Ra.




Rolling Down an Inclined Plane
A solid cylinder rolls down an inclined plane without slipping, starting from rest. It has mass m and radius r. (a) What is its
acceleration? (b) What condition must the coefficient of static friction pg satisfy so the cylinder does not slip?
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Rolling without slipping Free-body diagram

A solid cylinder rolls down an inclined plane without slipping from rest. The coordinate system
has x in the direction down the inclined plane and y perpendicular to the plane. The free-body
diagram is shown with the normal force, the static friction force, and the components of the
weight mg. Friction makes the cylinder roll down the plane rather than slip.




Rolling Down an Inclined Plane
A solid cylinder rolls down an inclined plane without slipping, starting from rest. It has mass m and radius r. (a) What is its

acceleration? (b) What condition must the coefficient of static friction pg satisfy so the cylinder does not slip?
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ROLLING AND SLIPPING

openstax”
W # UE.” o F ﬁ;’”
y —
Acum
F X Ve
fi
N
fe = N
(a) Forces on wheel (b) Wheel is rolling and slipping

(a) Kinetic friction arises between the wheel and the surface because the wheel is
slipping.

(b) The simple relationships between the linear and angular variables are no longer
valid.




FIGURE 11.7
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Wheel rolls and slips Free-body diagram

A solid cylinder rolls down an inclined plane from rest and undergoes slipping. The
coordinate system has x in the direction down the inclined plane and y upward

perpendicular to the plane. The free-body diagram shows the normal force, kinetic
friction force, and the components of the weight mg.




Conservation of Mechanical Energy in Rolling Motion

In the preceding chapter, we introduced rotational kinetic energy. Any rolling object carries rotational kinetic energy, as well as
translational kinetic energy and potential energy if the system requires. Including the gravitational potential energy, the total
mechanical energy of an abject rolling is

; 1 5
Er = EmvEM + EICMaf + mgh.




ANGULAR MOMENTUM OF A PARTICLE

The angular momentum 1 of a particle is defined as the cross-product of F and ﬁ and is perpendicular to the plane
containing T and ﬁ :

'l’ —T % f,’ (11.5)
Zy
Tis perpendicular
to the xy-plane
—
ﬂ'l Z —
- — — t
% dt

rand p are
in the xy-plane

X

In three-dimensional space, the position vector r locates a particle in the xy-plane with
linear momentum p. The angular momentum with respect to the originis1= r x p,
which is in the z-direction. The direction of 1 is given by the right-hand rule, as shown.




Angular Momentum and Torque on a Meteor
A meteor enters Earth's atmosphere (Figure 11.10) and is observed by someone on the ground hefore it burns up in the

atmosphere. The vector T = 25kmi + 25 kmj gives the position of the meteor with respect to the observer. At the
instant the observer sees the meteor, it has linear momentum ﬁ = 15.0 kg(—2.0knv/sj), and it is accelerating at a

constant 2.0 nﬂsz(—j} along its path, which for our purposes can be taken as a straight line. (a) What is the angular
momentum of the meteor about the origin, which is at the location of the observer? (b) What is the torque on the meteor
about the origin?

y is vertically upward ’
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x is along the ground




y is vertically upward ’
Angular Momentum and Torque on a Meteor y’
A meteor enters Earth's atmosphere (Eigure 11.10) and is observed by someone on the ground before it burns up in the =

atmosphere. The vector T = 25 kmi + 25 kmj gives the position of the meteor with respect to the observer. At the
instant the observer sees the meteor, it has linear momentum ﬁ = 15.0 kg(—2.0km/sj), and it is accelerating at a

=i

constant 2.0 nﬁsg(—j) along its path, which for our purposes can be taken as a straight line. (a) What is the angular
momentum of the meteor about the origin, which is at the location of the observer? (b) What is the torque on the meteor
about the origin?

x
i x is along the ground

a.=10, a,=-—20mi.

We write the velocities using the kinematic equations.
v, =0, v,=-2.0 x 10° m/s — (2.0 m/s°)z.

a. The angular momentum is

T =7 x p=(250kmi +250kmj) x 15.0kg(0f + v,j)
= 15.0 kg[25.0 km(v, k]
= 15.0kg[2.50 x 10* m(—2.0 x 10° m/s — (2.0 m/s®)r)K].

At t = 0, the angular momentum of the meteor about the origin is

1o = 15.0kg[2.50 x 10° m(=2.0 x 10° m/s)k] = 7.50 x 10® kg - m*/s(~k).
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A proton spiraling around a magnetic field executes circular motion in the plane of the paper, as shown below. The

circular path has a radius of 0.4 m and the proton has velocity 4.0 X 10° m/s. What is the angular momentum of
the proton about the origin?

ol
y
X
Proton



TOTAL ANGULAR MOMENTUM
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Three patrticles in the xy-plane with different position and momentum vectors.




ANGULAR MOMENTUM OF A RIGID BODY

Angular momentumm
vector of mass segment

! ti;{ o }{fﬁz v
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Mass segment
located at T, i
with velocity , -

(a) (b}

(2) Arrigid body is constrained to rotate around the z-axis. The rigid body is symmetrical about the
Z-axis. A mass segment Am; is located at position r;, which makes angle 6; with respect to the
z-axis. The circular motion of an infinitesimal mass segment is shown.

(b) il- is the angular momentum of the mass segment and has a component along the z-axis (ii)z.

L=1Iw.




Angular Momentum of a Robot Arm

A robot arm on a Mars rover like Curiosity shown in Eigure 11.8 is 1.0 m long and has forceps at the free end to pick up
rocks. The mass of the arm is 2.0 kg and the mass of the forceps is 1.0 kg. See Eigure 11.13. The robot arm and forceps
move from restto @ = 0.1 rad/s in 0.1 s. It rotates down and picks up a Mars rock that has mass 1.5 kg. The axis of
rotation is the point where the robot arm connects to the rover. (a) What is the angular momentum of the robot arm by
itself about the axis of rotation after 0.1 s when the arm has stopped accelerating? (b) What is the angular momentum of
the robot arm when it has the Mars rock in its forceps and is rotating upwards? (c) When the arm does not have a rock in
the forceps, what is the torque about the point where the arm connects to the rover when it is accelerating from rest to its

final angular velocity?

Robot arm

Axis of




Angular Momentum of a Robot Arm

A robot arm on a Mars rover like Curiosity shown in Figure 11.8 is 1.0 m long and has forceps at the free end to pick up
rocks. The mass of the arm is 2.0 kg and the mass of the forceps is 1.0 kg. See Figure 11.13. The robot arm and forceps
move from rest to @ = 0.1x rad/s in 0.1 s. It rotates down and picks up a Mars rock that has mass 1.5 kg. The axis of
rotation is the point where the robot arm connects to the rover. (a) What is the angular momentum of the robot arm by
itself about the axis of rotation after 0.1 s when the arm has stopped accelerating? (b) What is the angular momentum of
the robot arm when it has the Mars rock in its forceps and is rotating upwards? (c) When the arm does not have a rock in
the forceps, what is the torque about the point where the arm connects to the rover when it is accelerating from rest to its
final angular velocity?

Robot arm: I = _%mgrz = %(2.(}0 kg)(1.00 m)*> = %kg -m?.

Forceps: [g = mer® = (1.0 kg)(1.0 m)* = 1.0 kg - m?.
Mars rock: Iyg = myrr> = (1.5 kg)(1.0 m)? = 1.5 kg - m?.

Therefore, without the Mars rock, the total moment of inertia is

b = Iz + I = 1.67 kg« m”

and the magnitude of the angular momentum is - el

L =Iw = 1.67 kg - m*(0.1x rad/s)= 0.17x kg - m*/s.

h. We must include the Mars rock in the calculation of the moment of inertia, so we have

ITOI.‘.}J = !R + IF + I.\'IR =314 kg # mz

Zr: Ia = 1.67 kg - m* (7 rad/s*) = 1.672 N - m.

and

L =Iw =3.17 kg - m*(0.1x rad/s)= 0.327 kg - m*/s.




LAW OF CONSERVATION OF ANGULAR MOMENTUM

The angular momentum of a system of particles around a point in a fixed inertial reference frame is conserved if there is
no net external torque around that point:

R (11.10)
dt

or

- -
i +12 + -+« + 15 = constant. (11.11)
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(a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular
momentum is conserved because the net torque on her is negligibly small.

(b) Her rate of spin increases greatly when she pulls in her arms, decreasing her moment of
inertia. The work she does to pull in her arms results in an increase in rotational kinetic energy.




Coupled Flywheels

A flywheel rotates without friction at an angular velocity @, = 600 rev/min on a frictionless, vertical shaft of negligible
rotational inertia. A second flywheel, which is at rest and has a moment of inertia three times that of the rotating flywheel,
is dropped onto it (Figure 11.16). Because friction exists between the surfaces, the flywheels very quickly reach the same
rotational velocity, after which they spin together. (a) Use the law of conservation of angular momentum to determine the
angular velocity @ of the combination. (b) What fraction of the initial kinetic energy is lost in the coupling of the flywheels?

LT T T I

I@&?O = (IO + 3!{))&),

® = imo = 150 rev/min = 15.7 rad/s.

b. Before contact, only one flywheel is rotating. The rotational kinetic energy of this flywheel is the initial rotational kinetic

_ 1

energy of the system, 1,2 The final kinetic energy is%(cﬂo)mz = %(4!0)(% )2 = tlowj.

Therefore, the ratio of the final kinetic energy to the initial kinetic energy is

1 2
Ejﬂmo 1

1722

Thus, 3/4 of the initial kinetic energy is lost to the coupling of the two flywheels.
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A gymnast dismounts from a high bar and executes a number of revolutions in the
tucked position before landing upright.
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A bullet is fired horizontally and becomes embedded in the edge of a disk that is free to
rotate about its vertical axis.




	Slide 1
	Figure 11.1
	Figure 11.2
	Figure 11.3
	Figure 11.4
	Figure 11.5
	Slide 7
	Figure 11.6
	Figure 11.7
	Slide 10
	Figure 11.9
	Figure 11.10
	Slide 13
	EXERCISE 11.2
	Figure 11.11
	Figure 11.12
	Figure 11.13
	Slide 18
	Slide 19
	Figure 11.14
	Figure 11.16
	Figure 11.17
	Figure 11.18

