ANNOUNCEMENTS

Homework #1, due Monday, Aug. 27
before class

* Answer conceptual questions 1.4 and 1.8
* Solve problems 1.16 and 1.46

There will be a 5-minute quiz on
Monday
at beginning of class
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ACCURACY AND PRECISION

openstax”

(a) High accuracy, low precision (b) Low accuracy, high precision

A GPS attempts to locate a restaurant at the center of the bull's-eye. The black dots

represent each attempt to pinpoint the location of the restaurant.

a) The dots are spread out quite far apart from one another, indicating low precision,
but they are each rather close to the actual location of the restaurant, indicating
high accuracy.

b) The dots are concentrated rather closely to one another, indicating high precision,

but they are rather far away from the actual location of the restaurant, indicating low

credit a and credit b: ificati '




SI UNITS

ISQ Base Quantity

Length

Mass

Time

Electrical current
Thermodynamic temperature
Amount of substance

Luminous intensity

Table 1.1 1SQ Base Quantities and Their SI Units

Sl Base Unit

meter (m)

kilogram (kg)

second (s)

ampere (A)

kelvin (K)

mole (mol)

candela (cd)



SI UNITS

The second

The Sl unit for time, the second (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar
day. More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a nonvarying or
constant physical phenomenon (because the solar day is getting longer as a result of the very gradual slowing of Earth's
rotation). Cesium atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted.
In 1967, the second was redefined as the time required for 9,192,631,770 of these vibrations to occur (Eigure 1.8). Note that this
may seem like more precision than you would ever need, but it isn't—GPSs rely on the precision of atomic clocks to be able to
give you turn-by-turn directions on the surface of Earth, far from the satellites broadcasting their location.




SI UNITS

openstax”

The meter

The Sl unit for length is the meter (abbreviated m); its definition has also changed over time to become more precise. The meter
was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in
1889 by redefining the meter to be the distance between two engraved lines on a platinum—iridium bar now kept near Paris. By
1960, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again
redefined as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its current
definition (in part for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second (Eigure 1.9). This
change came after knowing the speed of light to be exactly 299,792,458 m/s. The length of the meter will change if the speed of
light is someday measured with greater accuracy.

Light travels a distance of 1 meter
in 1/299,792,458 seconds

The meter is defined to be the distance light travels in 1/299,792,458 of a second in a
vacuum. Distance traveled is speed multiplied by time.




SI UNITS

The kilogram

The Sl unit for mass is the kilogram (abbreviated kg); it is defined to be the mass of a platinum—iridium cylinder kept with the old
meter standard at the International Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram are also
kept at the U.S. National Institute of Standards and Technology (NIST), located in Gaithersburg, Maryland, outside of
Washington, DC, and at other locations around the world. Scientists at NIST are currently investigating two complementary
methods of redefining the kilogram (see Figure 1.10). The determination of all other masses can be traced ultimately to a
comparison with the standard mass.




METRIC PREFIXES

Prefix

yotta-

zetta-

eXa-

peta-

tera-

giga-

mega-

kilo-

hecto-

deka-

Symbol

da

Meaning

1 024

1021

1018

1015

1012

10°

106

103

102

10!

Prefix

yocto-

zepto-

atto-

femto-

pico-

nano-

micro-

milli-

centi-

deci-

Symbol

Meaning

10—24

10721

10—18

10—15

10—12

1079

1076

103

1072

101




EXAMPLE 1.1

Using Metric Prefixes
Restate the mass 1.93 x 1013kg using a metric prefix such that the resulting numerical value is bigger than one but
less than 1000.

Strategy

Since we are not allowed to “double-up” prefixes, we first need to restate the mass in grams by replacing the prefix
symbol k with a factor of 103 (see Table 1.2). Then, we should see which two prefixes in Table 1.2 are closest to the
resulting power of 10 when the number is written in scientific notation. We use whichever of these two prefixes gives
us a number between one and 1000.

Solution
Replacing the k in kilogram with a factor of 103, we find that

1.93 x 10%kg =1.93 x 10 x 10°g =1.93 x 10'%g.

From Table 1.2, we see that 10° is between “peta-" (101%) and “exa-" (1018). If we use the “peta-" prefix, then we find
that 1.93 x 10'%g = 1.93 x 10'Pg, since 16 = 1 + 15. Alternatively, if we use the “exa-" prefix we find that
1.93 x 1016g =1.93 x 10_2Eg, since 16 = —2 4 18. Because the problem asks for the numerical value
between one and 1000, we use the “peta-" prefix and the answer is 19.3 Pqg.




UNIT CONVERSION AND DIMENSIONAL ANALYSIS

EXAMPLE 1.3

Converting between Metric Units
The density of iron is 7.86 g/cm3 under standard conditions. Convert this to kg!m3.

Strategy

We need to convert grams to kilograms and cubic centimeters to cubic meters. The conversion factors we need are
lkg = 103g and 1 cm = 10~ 2m. However, we are dealing with cubic centimeters (cm3 —cm X cm X cm),
so we have to use the second conversion factor three times (that is, we need to cube it). The idea is still to multiply by
the conversion factors in such a way that they cancel the units we want to get rid of and introduce the units we want to
keep.

Solution

k ’ .86
£ S« ( o ) = ! kg/m® = 7.86 x 10°kg/m®

7.86 X
| 10° ¢ 10 %m 10%)(107%)

Check your units!




Base Quantity Symbol for Dimension

Length L
Mass M
Time T
Current I

Thermodynamic temperature ©
Amount of substance N
Luminous intensity J

Table 1.3 Base Quantities and Their Dimensions




EXAMPLE 1.5

Checking Equations for Dimensional Consistency

Consider the physical quantities s, v, @, and ¢ with dimensions [s] = L, [v] = LT}, [a] = LT 2, and [t] = T.
Determine whether each of the following equations is dimensionally consistent: (a) 8§ = vt + 0.5at2; (b)

s = vt? + 0.5at; and (c) v = sin(at?/s).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same
dimensions as the other terms in that equation and that the arguments of any standard mathematical functions are
dimensionless.

Check dimensional consistency!




EXAMPLE 1.5

Checking Equations for Dimensional Consistency

Consider the physical quantities s, v, @, and ¢ with dimensions [s] = L, [v] = LT}, [a] = LT 2, and [t] = T.
Determine whether each of the following equations is dimensionally consistent: (a) 8§ = vt + 0.5at2; (b)

s = vt? + 0.5at; and (c) v = sin(at?/s).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same
dimensions as the other terms in that equation and that the arguments of any standard mathematical functions are
dimensionless.

Solution

a. There are no trigonometric, logarithmic, or exponential functions to worry about in this equation, so we need
only look at the dimensions of each term appearing in the equation. There are three terms, one in the left
expression and two in the expression on the right, so we look at each in turn:

s] =L
] =[v] - [t =LT ! - T=LT°=L
[0.5at2] = [a] - [t]* =LT 2-T? = LT° = L.

All three terms have the same dimension, so this equation is dimensionally consistent.




EXAMPLE 1.5

Checking Equations for Dimensional Consistency

Consider the physical quantities s, v, @, and ¢ with dimensions [s] = L, [v] = LT}, [a] = LT 2, and [t] = T.
Determine whether each of the following equations is dimensionally consistent: (a) 8§ = vt + 0.5at2; (b)

s = vt? + 0.5at; and (c) v = sin(at?/s).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same
dimensions as the other terms in that equation and that the arguments of any standard mathematical functions are
dimensionless.

b. Again, there are no trigopnometric, exponential, or logarithmic functions, so we only need to look at the
dimensions of each of the three terms appearing in the equation:

[s] =L
2] = [v] - [t]* =LT ! -T2 =LT
[at] = [a] - ] = LT 2-T=LT'.

None of the three terms has the same dimension as any other, so this is about as far from being dimensionally
consistent as you can get. The technical term for an equation like this is nonsense.




EXAMPLE 1.5

Checking Equations for Dimensional Consistency

Consider the physical quantities s, v, @, and ¢ with dimensions [s] = L, [v] = LT}, [a] = LT 2, and [t] = T.
Determine whether each of the following equations is dimensionally consistent: (a) 8§ = vt + 0.5&t2; (b)

s = vt? + 0.5at; and (c) v = sin(at?/s).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same
dimensions as the other terms in that equation and that the arguments of any standard mathematical functions are
dimensionless.

c. This equation has a trigonometric function in it, so first we should check that the argument of the sine function is
dimensionless:

The argument is dimensionless. So far, so good. Now we need to check the dimensions of each of the two
terms (that is, the left expression and the right expression) in the equation:

[v] = LT}
[sin (%2” =1.

The two terms have different dimensions—meaning, the equation is not dimensionally consistent. This equation is
another example of “nonsense.”




UNCERTAINTIES

Percent uncertainty

Another method of expressing uncertainty is as a percent of the measured value. If a measurement A is expressed with
uncertainty dA, the percent uncertainty is defined as

0A
Percent uncertainty = e x 100%.

EXAMPLE 1.7

Calculating Percent Uncertainty: A Bag of Apples
A grocery store sells 5-1b bags of apples. Let's say we purchase four bags during the course of a month and weigh the
bags each time. We obtain the following measurements:

+ Week 1 weight: 4.8 Ib
» Week 2 weight: 5.3 Ib
» Week 3 weight: 4.9 Ib
» Week 4 weight: 5.4 b

We then determine the average weight of the 5-Ib bag of apples is 5.1 + 0.2 Ib. What is the percent uncertainty of the
bag’s weight?




SIGNIFICANT FIGURES

Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant because they are
placeholders that locate the decimal point. There are two significant figures in 0.053. The zeros in 10.053 are not placeholders;
they are significant. This number has five significant figures. The zeros in 1300 may or may not be significant, depending on the
style of writing numbers. They could mean the number is known to the last digit or they could be placeholders. So 1300 could
have two, three, or four significant figures. To avoid this ambiguity, we should write 1300 in scientific notation as 1.3 X 103,
1.30 x 10'31 or 1.300 x 103, depending on whether it has two, three, or four significant figures. Zeros are significant except
when they serve only as placeholders.

Significant figures in calculations

When combining measurements with different degrees of precision, the number of significant digits in the final answer can be no
greater than the number of significant digits in the least-precise measured value. There are two different rules, one for
multiplication and division and the other for addition and subtraction.

1. For multiplication and division, the result should have the same number of significant figures as the quantity with the least
number of significant figures entering into the calculation. For example, the area of a circle can be calculated from its
radius using A = rir?. Let's see how many significant figures the area has if the radius has only two—say, r = 1.2 m. Using
a calculator with an eight-digit output, we would calculate

A =7r? = (3.1415927...) x (1.2m)* = 4.5238934 m>.
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